112
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Modelling and controller design for distributed parameter systems via residence time distribution

, &
Pages 1404-1413 | Received 22 Feb 2008, Accepted 10 Jul 2008, Published online: 18 Jun 2009
 

Abstract

For chemical reactors with non-linear fluid dynamics, a linear model realisation is proposed. The inputs are the ingoing concentration of a certain component in the fluid, and the reaction rate. The output is the outgoing concentration. The realisation makes use of a first-order reaction equation, and the residence time distribution of the fluid particles inside the reactor. Also dead time is incorporated in the modelling. The method is tested on two non-linear models for which the residence time distributions are known analytically. The first model is a series of mixed tanks, and it is shown by simulation that the method gives an accurate approximation of the original model. The second model is a UV disinfection reactor, which has a dead time. For this model, the residence time distribution is first fitted by a form that is suitable for our realisation method. Simulations show that for realistic disturbances a high-performance linear controller can be designed. After that, the residence time distribution of a real life UV reactor (for which we have no model) is fitted by a suitable form. The fit is of the same quality as for the UV reactor model. This indicates that also for the real life UV reactor a high-performance controller can be designed.

Acknowledgements

This work was supported by the Technology Foundation STW under project number WWI.6345. We are grateful to Dr Nico Enthoven of Priva BV for providing us with experimental test results.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,709.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.