342
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Multi-axis model predictive contouring control

, &
Pages 1410-1424 | Received 08 Jul 2012, Accepted 20 Jan 2013, Published online: 09 Jul 2013
 

Abstract

Contouring systems involve competing control objectives of maximising accuracy while minimising traversal time. A previously developed model predictive contouring controller for biaxial systems is extended to multi-axis systems subject to joint acceleration and jerk constraints. This requires consideration of manipulator forward kinematics and both position and orientation of the end effector. The control design is based on minimising a cost function which reflects the trade-off between the control objectives. A new architecture is proposed where the joint position controllers operate at a sample rate comparable to industrial machines, while the contouring control scheme operates at a slower rate. The proposed approach is applied to a simulation model of an industrial profile cutting machine. A number of implementations are presented requiring varying degrees of modification to the existing machine hardware and sensing capability. Results demonstrate the effect of the cost function weights on contouring accuracy and traversal time, as well as the trade-off between achieving the best contouring performance and minimising modification of the existing system.

Acknowledgement

The authors would like to thank ANCA Motion Pty Ltd for its generous support of this work.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,709.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.