511
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

High-efficiency resonant coupled wireless power transfer via tunable impedance matching

, , &
Pages 1607-1625 | Received 09 May 2016, Accepted 05 Feb 2017, Published online: 21 Apr 2017
 

ABSTRACT

For magnetic resonant coupled wireless power transfer (WPT), the axial movement of near-field coupled coils adversely degrades the power transfer efficiency (PTE) of the system and often creates sub-resonance. This paper presents a tunable impedance matching technique based on optimum coupling tuning to enhance the efficiency of resonant coupled WPT system. The optimum power transfer model is analysed from equivalent circuit model via reflected load principle, and the adequate matching are achieved through the optimum tuning of coupling coefficients at both the transmitting and receiving end of the system. Both simulations and experiments are performed to evaluate the theoretical model of the proposed matching technique, and results in a PTE over 80% at close coil proximity without shifting the original resonant frequency. Compared to the fixed coupled WPT, the extracted efficiency shows 15.1% and 19.9% improvements at the centre-to-centre misalignment of 10 and 70 cm, respectively. Applying this technique, the extracted S21 parameter shows more than 10 dB improvements at both strong and weak couplings. Through the developed model, the optimum coupling tuning also significantly improves the performance over matching techniques using frequency tracking and tunable matching circuits.

Acknowledgements

This research work is supported by the University of Malaya High Impact Research (HIR) Grant (UM.C/628/HIR/ENG/51) sponsored by the Ministry of Higher Education (MOHE), Malaysia.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This research work is supported by the University of Malaya High Impact Research (HIR) Grant (UM.C/628/HIR/ENG/51) sponsored by the Ministry of Higher Education (MOHE), Malaysia.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 702.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.