239
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Edaravone inhibits autophagy after neuronal oxygen-glucose deprivation/recovery injury

, , , , , , , & show all
Pages 501-510 | Received 27 Aug 2018, Accepted 11 Nov 2018, Published online: 09 Jan 2019
 

Abstract

Purpose of the study: Edaravone is an oxygen free radical scavenger that is widely used to treat ischemic injury to the nervous system. This study investigated the effect of edaravone pretreatment on neurons subjected to oxygen-glucose deprivation/recovery (OGD/R) injury.

Materials and methods: Common neurons were subjected to oxygen and glucose deprivation for 1 h, followed by oxygen and glucose recovery for 0.5, 2, 6 and 12 h to establish the OGD/R model. Autophagy was assessed by electron microscope observation of autophagosomes, cell immunofluorescence, mRFP-GFP-LC3 virus cell fluorescence and western blotting analyses of the autophagy-related proteins. The findings showed that at OGD/R 2 h autophagy was high. Next, neurons were pretreated with different concentrations of edaravone (0, 5, 10, 25, 50 and 100 μM) before establishing the OGD/R model. Western blotting was used to analyze the expression of autophagy-related proteins. The CCK-8 assay was used to analyze cell viability after pretreatment with different concentrations of edaravone. Optimal inhibition of autophagy was achieved with the concentration of edaravone 50 μM. Neurons pretreated with 50 μM edaravone and established OGD/R model were analyzed for autophagy levels.

Results: At every OGD/R time point autophagy was lower in neurons pretreated with edaravone than in those not pretreated with the drug. The difference was statistically significant without OGD/R 12 h.

Conclusions: Pretreatment with edaravone may reduce the level of autophagy in neurons subjected to OGD/R injury.

Disclosure statement

No potential conflict of interests was reported by the authors.

Additional information

Funding

This research is supported by the National Natural Science Fund (No. 81772352) and the Research Innovation Program for Academic Degree College Graduates of Jiangsu (KYLX16_1105).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,997.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.