231
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Sensitivity analysis of a fuzzy multiobjective scheduling problem

, &
Pages 3327-3344 | Received 01 Sep 2006, Published online: 15 Apr 2008
 

Abstract

This paper concerns sensitivity analysis of a class of complex job shop scheduling problems which are characterized by: (1) a large number of jobs and machines, (2) uncertain jobs processing times, and (3) multiple measures of schedule performance including average weighted tardiness, the number of tardy jobs, the total setup times, the total idle time of machines, and the total flow times of jobs. The base schedule is generated by applying a new fuzzy multiobjective genetic algorithm which takes into consideration batching of the jobs of a similar type, jobs’ lots sizing and load balancing of the machines. The aim of the proposed sensitivity analysis of a generated schedule is to investigate the consequences of prolongations of job processing times on the measures of schedule performance. The processing times are described by triangular fuzzy numbers and their prolongation is done by expanding the supports of fuzzy numbers. The sensitivity analysis is performed through a series of numerical experiments. The effects of prolongations of job processing times on the measures of performance of a generated schedule are recorded and analysed. It is shown that the sensitivity analysis is among the primaries in evaluating the quality of a generated schedule. The sensitivity analysis is used in identifying the critical jobs and the critical machines which have the properties that the prolongations of their processing times produce the largest deteriorations of the performance measures and the overall quality of a generated schedule.

Acknowledgments

The authors would like to thank the Engineering and Physics Sciences Research Council (EPSRC), UK, for supporting this research (Grant Nos. GR/R95319/01 and GR/R95326/01). We would also like to acknowledge the support of our industrial collaborator Sherwood Press Ltd, Nottingham.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 973.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.