135
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Optimal sensor distribution for multi-station assembly process using chaos-embedded fast-simulated annealing

, &
Pages 187-211 | Received 01 Feb 2007, Published online: 14 Nov 2008
 

Abstract

This paper presents a novel methodology for the allocation of sensors in multi-station assembly processes. It resolves two core issues pertaining to the determination of an optimal number of sensors to be employed and their best locations. To make the traditional approach more effective, the effect of noise on sensor placement is minimized by maximizing the determinant of the Fischer information matrix. A state-space approach is adopted to model the variation propagation pertaining to the transfer of parts in a given multi-station assembly process. Further, the objective function conceived is significant over other contributions with respect to adding the effect of noise coupled with the sensors. Moreover, a new algorithm is developed to optimize the newly formulated objective function. The proposed algorithm combines chaotic sequences with traditional evolutionary fast simulated annealing (EFSA), hence it is termed chaos-embedded fast-simulated annealing (CEFSA). It can find the optimal sensor distribution with the minimum effect of noise in the sensor data. This paper reports on conceptual work, which underpins the research, and also presents details of a numerical example carried out in an industrial context to test the efficacy of the proposed algorithm. Further analysis reveals that the proposed approach obtains optimal distribution of sensors and offers more generic results compared with previously concluded analysis.

Acknowledgements

The authors are thankful to the anonymous referees for constructive comments and suggestions that significantly improved the quality of this paper.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 973.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.