327
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Multi-criteria optimisation-based dynamic scheduling for controlling FMS

Pages 6111-6121 | Received 22 Nov 2011, Accepted 12 Jan 2012, Published online: 23 Mar 2012
 

Abstract

This study deals with controlling flexible manufacturing systems (FMS) operating in volatile production environments. Most studies that address this issue use some sort of adaptive scheduling that enables the FMS to cope with the randomness and variability efficiently. The methods presented in the literature are usually based on heuristics and use simple dispatching rules. They do not consider changing the decision criteria dynamically as the system conditions change. In contrast to previous studies, the present study focuses on developing a control mechanism for dynamic scheduling that is based on incremental optimisation. This means that each time a scheduling decision is made, the local optimisation problem is solved such that the next jobs to be processed on machines are selected. The objective function (dominant decision criterion) for this optimisation problem is selected dynamically based on production order requirements, actual shop-floor status and system priorities. The proposed multi-criteria optimisation-based dynamic scheduling methodology was evaluated and compared with some known scheduling rules/policies. The results obtained demonstrate the superiority of the suggested methodology as well as its capability to cope with a multi-criteria environment.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 973.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.