600
Views
52
CrossRef citations to date
0
Altmetric
Articles

Availability optimisation for stochastic degrading systems under imperfect preventive maintenance

, &
Pages 4132-4141 | Received 14 Feb 2013, Accepted 29 Jul 2013, Published online: 16 Sep 2013
 

Abstract

This paper deals with imperfect preventive maintenance (PM) optimisation problem. The system to be maintained is typically a production system assumed to be continuously monitored and subject to stochastic degradation. To assess such degradation, the proposed maintenance model takes into account both corrective maintenance (CM) and PM. The system undergoes PM whenever its reliability reaches an appropriate value, while CM is performed at system failure. After a given number of maintenance actions, the system is preventively replaced by a new one. Both CM as well as PM are considered imperfect, i.e. they bring the system to an operating state which lies between two extreme states, namely the as bad as old state and as good as new state. The imperfect effect of CM and PM is modelled on the basis of the hybrid hazard rate model. The objective of the proposed PM optimisation model consists on finding the optimal reliability threshold together with the optimal number of PM actions to maximise the average availability of the system. A mathematical model is then proposed. To solve this problem an algorithm is provided. A numerical example is presented to illustrate the proposed maintenance optimisation model.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 973.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.