179
Views
9
CrossRef citations to date
0
Altmetric
Articles

Non-approximability of the single crane container transhipment problem

ORCID Icon & ORCID Icon
Pages 3965-3975 | Received 26 Dec 2018, Accepted 19 Jun 2019, Published online: 09 Jul 2019
 

Abstract

The makespan of operations at container terminals is crucial for the lead time of cargo and consequently the reduction of transportation costs. Therefore, an efficient transhipment and short storage of containers are demanded. Our paper refers to the consolidation process of trains in a container transhipment terminal as well as to the intermediate storage of containers in seaports in order to accelerate the loading and unloading of the vessels. It can also be encountered in automated storage/retrieval systems. Each of these (container) storage and retrieval moves corresponds to a crane operation, carrying a load from its pickup to its drop-off position. The problem is to find a permutation of the loaded crane moves that minimises the total empty crane travel time, which is the sum of times the crane needs to get from the last drop-off point of a load to the next pickup point of a load. We address the problem as an extension of an asymmetric travelling salesman problem (ATSP), assuming that n ordered pairs of points in the two-dimensional Euclidean space need to be traversed. Each point corresponds to a crane operation carrying a load from its pickup to its drop-off position. Despite that the problem seems to be easier than the ATSP, because a simple constant factor approximation exists, which was for a long time an open question for the ATSP, we are the first to prove that there is no polynomial-time approximation algorithm with an approximation guarantee less than 1+0.23/n unless P=NP.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

Katarzyna A. Kuzmicz's research has been funded by the Ministry of Science and Higher Education of Poland, grant number S/WZ/1/2014.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 973.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.