635
Views
58
CrossRef citations to date
0
Altmetric
Original Articles

Modelling the Environmental Degradation of the Interface in Adhesively Bonded Joints using a Cohesive Zone Approach

, , &
Pages 1061-1089 | Received 07 Mar 2006, Accepted 12 Jul 2006, Published online: 25 Jan 2007
 

Abstract

The use of a cohesive zone model (CZM) to predict the long-term durability of adhesively bonded structures exposed to humid environments has been investigated. The joints were exposed to high relative humidity (RH) environments and immersion in both tap and deionised water for up to a year before quasi-static testing to failure. Both stressed and unstressed conditions during aging were considered. The degradation was faster for the stressed joints and for those joints immersed in the more corrosive environments. Two mechanisms were suggested to explain this behaviour: cathodic delamination and stress-enhanced degradation. In the model, the cohesive zone parameters determine the residual strength of the joints. The degradation of these parameters was, in the first instance, related directly to the moisture concentration. The model was then extended to include degradation due to stress and more corrosive environments. Good correlation between the numerical modelling and the experimental results was obtained.

ACKNOWLEDGEMENT

The authors gratefully acknowledge the Ministry of Defence for funding and QinetiQ for manufacturing and testing of the SLJ and the L-joints.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 868.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.