80
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Effect of ultrasonic-assisted on the bonding properties of hot-pressing molded polybutylene terephthalate/aluminum alloy composite

, , , , , , & show all
Pages 1108-1137 | Received 31 Aug 2023, Accepted 02 Dec 2023, Published online: 08 Dec 2023
 

ABSTRACT

The mechanical properties and structure of polybutylene terephthalate (PBT)/aluminum (Al) composite prepared by ultrasonic-assisted hot-pressing were analyzed, and the influence of ultrasonic-assisted on the bonding properties of PBT/Al composite was studied. The experimental results showed that under the optimal ultrasonic-assisted conditions, the tensile shear strength of the PBT/Al composite reached 26.55 MPa, which was 22.18% higher than that of the PBT/Al composite without ultrasonic-assisted (21.73 MPa). Scanning electron microscopy (SEM) showed that during the hot-pressing process, ultrasonic-assisted promoted the embedding of PBT in the anodic oxide pores on the surface of Al, forming a stronger mechanical interlocking structure. X-ray diffraction (XRD) showed that ultrasonic-assisted did not change the crystal type of PBT, but the shear effect of ultrasound affected the arrangement and orientation of molecular chains in the PBT melt, resulting in changes in crystallinity. X-ray photoelectron spectroscopy (XPS) showed that ultrasonic-assisted did not generate new chemical bonds during the hot-pressing process. Therefore, during the hot-pressing process, ultrasonic-assisted promoted the embedding of PBT in the anodic oxide pores on the surface of Al, enhanced the mechanical interlocking effect between PBT and Al, and improved the tensile shear strength of the PBT/Al composite.

Acknowledgments

The authors thank the Material Testing Center of Chongqing University of Technology for providing test characterization services.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by the key project of Chongqing Science and Technology Bureau under Grant cstc2020jscx-lyggX0007; the postgraduate innovation project of Chongqing University of Technology under Grant gzlcx20232011.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 868.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.