2,585
Views
183
CrossRef citations to date
0
Altmetric
State-of-the-art paper

Effect of transients on Francis turbine runner life: a review

, &
Pages 121-132 | Received 13 Sep 2012, Accepted 30 Oct 2013, Published online: 07 Mar 2013
 

Abstract

The present electricity market and the injection of power generated using intermittent energy sources have brought instability in the operation of the power grid. This has resulted in frequent load variations, emergency shut-down and restart, total load rejections, and off-design operation of grid connected hydraulic turbines. The present paper reviews the available literature summarizing the effects of transients on Francis turbine investigated experimentally, numerically, and analytically. Transients create both steady and unsteady pressure loading on the runner blade, resulting in cyclic stresses and fatigue development in the runner. These effects shorten the runner life, increase cost of plant operation, and loss of power generation. The reviewed literature has shown that one start–stop cycle can shorten predefined refurbishment time up to 15 hours. Turbine start–stop cannot be avoided, but runner life may be improved by minimizing the unfavourable pressure loading on the blades during transients through strategic movement of guide vanes.

Acknowledgements

The Swedish Hydropower Centre (SVC) financed part of this research.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 203.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.