1,868
Views
11
CrossRef citations to date
0
Altmetric
Research papers

Double-averaged kinetic energy budgets in flows over mobile granular beds: insights from DNS data analysis

ORCID Icon, ORCID Icon, , , , , & show all
Pages 653-672 | Received 11 Apr 2018, Accepted 23 Jul 2019, Published online: 08 Nov 2019

Figures & data

Figure 1. Spatial distributions of the local (left-side plot in each subfigure) and global (right-side plot in each subfigure) space-time porosity φVT for scenarios HP (a) and LP (b), showing key features of bed morphology based on the distributions of φVT

Figure 1. Spatial distributions of the local (left-side plot in each subfigure) and global (right-side plot in each subfigure) space-time porosity φVT for scenarios HP (a) and LP (b), showing key features of bed morphology based on the distributions of φVT

Figure 2. Vertical distributions of the terms of the globally averaged DMKE balance of Eq. (Equation3): DMKE mean convection CDD (term 1) and velocity-time porosity correlation CDM (term 2) for scenarios HP (a) and LP (b); turbulent TDT (term 4), form-induced TDF (term 5) and velocity-time porosity transport TDM (term 6) of DMKE for scenarios HP (c) and LP (d); pressure TDP (term 7) and viscous transport TDV of DMKE (term 8) for scenarios HP (e) and LP (f); the energy supply GD (term 3), pressure work against bulk strain rate PDP (term 12), viscous dissipation to heat DD (term 13), and the interfacial energy exchange ΦD (term 14) for scenarios HP (g) and LP (h); the energy exchange with the TKE balance PDT (term 9) and FKE balance PDF (term 10), PDM (term 11) for scenarios HP (i) and LP (j). The shown term values are normalized on f1Ub

Figure 2. Vertical distributions of the terms of the globally averaged DMKE balance of Eq. (Equation3(3) 12∂∂xj(φVT⟨u¯i⟩⟨u¯i⟩⟨u¯j⟩)⏟(1):CDD+∂∂xj(φVm⟨φTu¯~i⟩⟨u¯i⟩⟨u¯j⟩)⏟(2):CDM=φVT⟨u¯1⟩f1⏟(3):GD−∂∂xj(φVm⟨φTui′uj′¯⟩⟨u¯i⟩)⏟(4):−TDT−∂∂xj(φVm⟨φTu¯~iu¯~j⟩⟨u¯i⟩)⏟(5):−TDF−12∂∂xj(φVm⟨φTu¯~j⟩⟨u¯i⟩⟨u¯i⟩)⏟(6):−TDM−1ρf∂∂xi(φVm⟨φTp¯⟩⟨u¯i⟩)⏟(7):−TDP+νf∂∂xj(φVmφT∂ui∂xj¯⟨u¯i⟩)⏟(8):TDV+φVm⟨φTui′uj′¯⟩∂⟨u¯i⟩∂xj⏟(9):PDT+φVm⟨φTu¯~iu¯~j⟩∂⟨u¯i⟩∂xj⏟(10):PDF+φVm⟨φTu¯~i⟩⟨u¯j⟩∂⟨u¯i⟩∂xj⏟(11):PDM+φVm⟨φTp¯⟩ρf∂⟨u¯i⟩∂xi⏟(12):PDP−νfφVmφT∂ui∂xj¯∂⟨u¯i⟩∂xj⏟(13):−DD+⟨u¯i⟩ρfV0∫SintpnidS¯s−⟨u¯i⟩V0∫Sintνf∂ui∂xjnjdS¯s⏟(14):ΦD(3) ): DMKE mean convection CDD (term 1) and velocity-time porosity correlation CDM (term 2) for scenarios HP (a) and LP (b); turbulent TDT (term 4), form-induced TDF (term 5) and velocity-time porosity transport TDM (term 6) of DMKE for scenarios HP (c) and LP (d); pressure TDP (term 7) and viscous transport TDV of DMKE (term 8) for scenarios HP (e) and LP (f); the energy supply GD (term 3), pressure work against bulk strain rate PDP (term 12), viscous dissipation to heat DD (term 13), and the interfacial energy exchange ΦD (term 14) for scenarios HP (g) and LP (h); the energy exchange with the TKE balance PDT (term 9) and FKE balance PDF (term 10), PDM (term 11) for scenarios HP (i) and LP (j). The shown term values are normalized on f1Ub

Figure 3. Spatial distributions of the energy converting terms of the DMKE balance of Eq. (Equation3): energy supply from the volume force work rate GD (term 3) for scenarios HP (a) and LP (b); turbulent conversion PDT (term 9) for scenarios HP (c) and LP (d); viscous dissipation DD (term 13) for scenarios HP (e) and LP (f). The term values are normalized on f1Ub

Figure 3. Spatial distributions of the energy converting terms of the DMKE balance of Eq. (Equation3(3) 12∂∂xj(φVT⟨u¯i⟩⟨u¯i⟩⟨u¯j⟩)⏟(1):CDD+∂∂xj(φVm⟨φTu¯~i⟩⟨u¯i⟩⟨u¯j⟩)⏟(2):CDM=φVT⟨u¯1⟩f1⏟(3):GD−∂∂xj(φVm⟨φTui′uj′¯⟩⟨u¯i⟩)⏟(4):−TDT−∂∂xj(φVm⟨φTu¯~iu¯~j⟩⟨u¯i⟩)⏟(5):−TDF−12∂∂xj(φVm⟨φTu¯~j⟩⟨u¯i⟩⟨u¯i⟩)⏟(6):−TDM−1ρf∂∂xi(φVm⟨φTp¯⟩⟨u¯i⟩)⏟(7):−TDP+νf∂∂xj(φVmφT∂ui∂xj¯⟨u¯i⟩)⏟(8):TDV+φVm⟨φTui′uj′¯⟩∂⟨u¯i⟩∂xj⏟(9):PDT+φVm⟨φTu¯~iu¯~j⟩∂⟨u¯i⟩∂xj⏟(10):PDF+φVm⟨φTu¯~i⟩⟨u¯j⟩∂⟨u¯i⟩∂xj⏟(11):PDM+φVm⟨φTp¯⟩ρf∂⟨u¯i⟩∂xi⏟(12):PDP−νfφVmφT∂ui∂xj¯∂⟨u¯i⟩∂xj⏟(13):−DD+⟨u¯i⟩ρfV0∫SintpnidS¯s−⟨u¯i⟩V0∫Sintνf∂ui∂xjnjdS¯s⏟(14):ΦD(3) ): energy supply from the volume force work rate GD (term 3) for scenarios HP (a) and LP (b); turbulent conversion PDT (term 9) for scenarios HP (c) and LP (d); viscous dissipation DD (term 13) for scenarios HP (e) and LP (f). The term values are normalized on f1Ub

Figure 4. Spatial distributions of the transport terms of the DMKE balance of Eq. (Equation3): mean convection CDD (term 1) for scenarios HP (a) and LP (b); turbulent transport TDT (term 4) for scenarios HP (c) and LP (d); viscous transport TDV (term 8) for scenarios HP (e) and LP (f). The term values are normalized on f1Ub

Figure 4. Spatial distributions of the transport terms of the DMKE balance of Eq. (Equation3(3) 12∂∂xj(φVT⟨u¯i⟩⟨u¯i⟩⟨u¯j⟩)⏟(1):CDD+∂∂xj(φVm⟨φTu¯~i⟩⟨u¯i⟩⟨u¯j⟩)⏟(2):CDM=φVT⟨u¯1⟩f1⏟(3):GD−∂∂xj(φVm⟨φTui′uj′¯⟩⟨u¯i⟩)⏟(4):−TDT−∂∂xj(φVm⟨φTu¯~iu¯~j⟩⟨u¯i⟩)⏟(5):−TDF−12∂∂xj(φVm⟨φTu¯~j⟩⟨u¯i⟩⟨u¯i⟩)⏟(6):−TDM−1ρf∂∂xi(φVm⟨φTp¯⟩⟨u¯i⟩)⏟(7):−TDP+νf∂∂xj(φVmφT∂ui∂xj¯⟨u¯i⟩)⏟(8):TDV+φVm⟨φTui′uj′¯⟩∂⟨u¯i⟩∂xj⏟(9):PDT+φVm⟨φTu¯~iu¯~j⟩∂⟨u¯i⟩∂xj⏟(10):PDF+φVm⟨φTu¯~i⟩⟨u¯j⟩∂⟨u¯i⟩∂xj⏟(11):PDM+φVm⟨φTp¯⟩ρf∂⟨u¯i⟩∂xi⏟(12):PDP−νfφVmφT∂ui∂xj¯∂⟨u¯i⟩∂xj⏟(13):−DD+⟨u¯i⟩ρfV0∫SintpnidS¯s−⟨u¯i⟩V0∫Sintνf∂ui∂xjnjdS¯s⏟(14):ΦD(3) ): mean convection CDD (term 1) for scenarios HP (a) and LP (b); turbulent transport TDT (term 4) for scenarios HP (c) and LP (d); viscous transport TDV (term 8) for scenarios HP (e) and LP (f). The term values are normalized on f1Ub

Figure 5. Vertical distributions of the terms of the globally averaged FKE balance of Eq. (Equation4): mean CFD (term 1) and form-induced convection of FKE TFF (term 5) for scenarios HP (a) and LP (b); turbulent TFT (term 6), pressure TFP (term 7) and viscous stress transport TFV (term 8) for scenarios HP (c) and LP (d); energy supply GF (term 2) and interfacial energy exchange ΦF (term 12) for scenarios HP (e) and LP (f); energy exchange with the DMKE balance PFF (term 3), PFM (term 4) and TKE balance PFT (term 9) for scenarios HP (g) and LP (h); the work of pressure on the form-induced strain rate PFP (term 10), viscous dissipation to heat DF (term 11) for the scenarios HP (i) and LP (j). The term values are normalized on f1Ub

Figure 5. Vertical distributions of the terms of the globally averaged FKE balance of Eq. (Equation4(4) 12∂∂xj(φVm⟨φTu¯~iu¯~i⟩⟨u¯j⟩)⏟(1):CFD=φVm⟨φTu¯~1⟩f1⏟(2):GF−φVm⟨φTu¯~iu¯~j⟩⟨u¯i⟩∂xj⏟(3):−PFF−φVm⟨φTu¯~i⟩⟨u¯j⟩∂⟨u¯i⟩∂xj⏟(4):−PFM−12∂∂xj(φVm⟨φTu¯~iu¯~iu¯~j⟩)⏟(5):−TFF−∂∂xj(φVm⟨φTui′uj′¯u¯~i⟩)⏟(6):−TFF−1ρf∂∂xi(φVm⟨φTp¯u¯~i⟩)⏟(7):−TFP+νf∂∂xj(φVm⟨φT∂ui∂xj¯u¯~i⟩)⏟(8):TFV+φVm⟨φTui′uj′¯∂u¯~i∂xj⟩⏟(9):PFT+φVmρf⟨φTp¯∂u¯~i∂xi⟩⏟(10):PFP−νfφVm⟨φT∂ui∂xj¯∂u¯~i∂xj⟩⏟(11):−DF+1ρfV0∫Sintu¯~ipnidS¯s−1V0∫Sintνfu¯~i∂ui∂xjnjdS¯s⏟(12):ΦF(4) ): mean CFD (term 1) and form-induced convection of FKE TFF (term 5) for scenarios HP (a) and LP (b); turbulent TFT (term 6), pressure TFP (term 7) and viscous stress transport TFV (term 8) for scenarios HP (c) and LP (d); energy supply GF (term 2) and interfacial energy exchange ΦF (term 12) for scenarios HP (e) and LP (f); energy exchange with the DMKE balance PFF (term 3), PFM (term 4) and TKE balance PFT (term 9) for scenarios HP (g) and LP (h); the work of pressure on the form-induced strain rate PFP (term 10), viscous dissipation to heat DF (term 11) for the scenarios HP (i) and LP (j). The term values are normalized on f1Ub

Figure 6. Spatial distributions of the energy converting terms of the FKE balance of Eq. (Equation4): energy supply from the DMKE balance PFF (term 3) for scenarios HP (a) and LP (b); energy exchange with the TKE balance PFT (term 9) for scenarios HP (c) and LP (d); viscous dissipation DF (term 11) for the scenarios HP (e) and LP (f). The term values are normalized on f1Ub

Figure 6. Spatial distributions of the energy converting terms of the FKE balance of Eq. (Equation4(4) 12∂∂xj(φVm⟨φTu¯~iu¯~i⟩⟨u¯j⟩)⏟(1):CFD=φVm⟨φTu¯~1⟩f1⏟(2):GF−φVm⟨φTu¯~iu¯~j⟩⟨u¯i⟩∂xj⏟(3):−PFF−φVm⟨φTu¯~i⟩⟨u¯j⟩∂⟨u¯i⟩∂xj⏟(4):−PFM−12∂∂xj(φVm⟨φTu¯~iu¯~iu¯~j⟩)⏟(5):−TFF−∂∂xj(φVm⟨φTui′uj′¯u¯~i⟩)⏟(6):−TFF−1ρf∂∂xi(φVm⟨φTp¯u¯~i⟩)⏟(7):−TFP+νf∂∂xj(φVm⟨φT∂ui∂xj¯u¯~i⟩)⏟(8):TFV+φVm⟨φTui′uj′¯∂u¯~i∂xj⟩⏟(9):PFT+φVmρf⟨φTp¯∂u¯~i∂xi⟩⏟(10):PFP−νfφVm⟨φT∂ui∂xj¯∂u¯~i∂xj⟩⏟(11):−DF+1ρfV0∫Sintu¯~ipnidS¯s−1V0∫Sintνfu¯~i∂ui∂xjnjdS¯s⏟(12):ΦF(4) ): energy supply from the DMKE balance PFF (term 3) for scenarios HP (a) and LP (b); energy exchange with the TKE balance PFT (term 9) for scenarios HP (c) and LP (d); viscous dissipation DF (term 11) for the scenarios HP (e) and LP (f). The term values are normalized on f1Ub

Figure 7. Spatial distributions of the transport terms of the FKE balance of Eq. (Equation4): mean convection CFD (term 1) for scenarios HP (a) and LP (b); form-induced convection TFF (term 5) for scenarios HP (c) and LP (d); turbulent transport TFT (term 6) for scenarios HP (e) and LP (f); viscous transport TFV (term 8) for the scenarios HP (g) and LP (h). The values are normalized on f1Ub

Figure 7. Spatial distributions of the transport terms of the FKE balance of Eq. (Equation4(4) 12∂∂xj(φVm⟨φTu¯~iu¯~i⟩⟨u¯j⟩)⏟(1):CFD=φVm⟨φTu¯~1⟩f1⏟(2):GF−φVm⟨φTu¯~iu¯~j⟩⟨u¯i⟩∂xj⏟(3):−PFF−φVm⟨φTu¯~i⟩⟨u¯j⟩∂⟨u¯i⟩∂xj⏟(4):−PFM−12∂∂xj(φVm⟨φTu¯~iu¯~iu¯~j⟩)⏟(5):−TFF−∂∂xj(φVm⟨φTui′uj′¯u¯~i⟩)⏟(6):−TFF−1ρf∂∂xi(φVm⟨φTp¯u¯~i⟩)⏟(7):−TFP+νf∂∂xj(φVm⟨φT∂ui∂xj¯u¯~i⟩)⏟(8):TFV+φVm⟨φTui′uj′¯∂u¯~i∂xj⟩⏟(9):PFT+φVmρf⟨φTp¯∂u¯~i∂xi⟩⏟(10):PFP−νfφVm⟨φT∂ui∂xj¯∂u¯~i∂xj⟩⏟(11):−DF+1ρfV0∫Sintu¯~ipnidS¯s−1V0∫Sintνfu¯~i∂ui∂xjnjdS¯s⏟(12):ΦF(4) ): mean convection CFD (term 1) for scenarios HP (a) and LP (b); form-induced convection TFF (term 5) for scenarios HP (c) and LP (d); turbulent transport TFT (term 6) for scenarios HP (e) and LP (f); viscous transport TFV (term 8) for the scenarios HP (g) and LP (h). The values are normalized on f1Ub

Figure 8. Vertical distributions of the terms of the TKE balance of Eq. (Equation5): mean CTD (term 1) and form-induced TTF (term 4) convection of TKE for scenarios HP (a) and LP (b); turbulent TTT (term 5), pressure TTP (term 6) and viscous TTV (term 7) transport for scenarios HP (c) and LP (d); turbulent production PTT (term 2), energy exchange with the FKE balance PTF (term 3), pressure–strain rate correlation PTP (term 8), viscous dissipation DT (term 9) and the interfacial energy exchange ΦT (term 10) for scenarios HP (e) and LP (f). The values of the TKE budget terms are normalized on f1Ub

Figure 8. Vertical distributions of the terms of the TKE balance of Eq. (Equation5(5) 12∂∂xj(φVm⟨φTui′ui′¯⟩⟨u¯j⟩)⏟(1):CTD=−φVm⟨φTui′uj′¯⟩∂⟨u¯i⟩∂xj⏟(2):−PTT−φVmφTui′uj′¯∂u¯~i∂xj⏟(3):−PTF−12∂∂xj(φVm⟨φTui′ui′¯u¯~j⟩)⏟(4):−TTF−12∂∂xj(φVm⟨φTui′ui′uj′¯⟩)⏟(5):−TTT−1ρf∂∂xi(φVm⟨φTui′p′¯⟩)⏟(6):−TTP+νf∂∂xjφVmφTui′∂ui′∂xj¯⏟(7):TTV+φVmρfφTp′∂ui′∂xi¯⏟(8):PTP−νfφVmφT∂ui′∂xj∂ui′∂xj¯⏟(9):−DT+1ρfV0∫Sintui′pnidS¯s−1V0∫Sintνfui′∂ui∂xjnjdS¯s⏟(10):ΦT(5) ): mean CTD (term 1) and form-induced TTF (term 4) convection of TKE for scenarios HP (a) and LP (b); turbulent TTT (term 5), pressure TTP (term 6) and viscous TTV (term 7) transport for scenarios HP (c) and LP (d); turbulent production PTT (term 2), energy exchange with the FKE balance PTF (term 3), pressure–strain rate correlation PTP (term 8), viscous dissipation DT (term 9) and the interfacial energy exchange ΦT (term 10) for scenarios HP (e) and LP (f). The values of the TKE budget terms are normalized on f1Ub

Figure 9. Spatial distributions of the energy-converting terms of the TKE balance of Eq. (Equation5): turbulent production PTT (term 2) for scenarios HP (a) and LP (b); viscous dissipation DT (term 9) for scenarios HP (c) and LP (d). The values of the TKE budget terms are normalized on f1Ub

Figure 9. Spatial distributions of the energy-converting terms of the TKE balance of Eq. (Equation5(5) 12∂∂xj(φVm⟨φTui′ui′¯⟩⟨u¯j⟩)⏟(1):CTD=−φVm⟨φTui′uj′¯⟩∂⟨u¯i⟩∂xj⏟(2):−PTT−φVmφTui′uj′¯∂u¯~i∂xj⏟(3):−PTF−12∂∂xj(φVm⟨φTui′ui′¯u¯~j⟩)⏟(4):−TTF−12∂∂xj(φVm⟨φTui′ui′uj′¯⟩)⏟(5):−TTT−1ρf∂∂xi(φVm⟨φTui′p′¯⟩)⏟(6):−TTP+νf∂∂xjφVmφTui′∂ui′∂xj¯⏟(7):TTV+φVmρfφTp′∂ui′∂xi¯⏟(8):PTP−νfφVmφT∂ui′∂xj∂ui′∂xj¯⏟(9):−DT+1ρfV0∫Sintui′pnidS¯s−1V0∫Sintνfui′∂ui∂xjnjdS¯s⏟(10):ΦT(5) ): turbulent production PTT (term 2) for scenarios HP (a) and LP (b); viscous dissipation DT (term 9) for scenarios HP (c) and LP (d). The values of the TKE budget terms are normalized on f1Ub

Figure 10. Spatial distributions of the transport terms of the TKE balance of Eq. (Equation5): mean convection CTD (term 1) for scenarios HP (a) and LP (b); turbulent convection TTT (term 5) for scenarios HP (c) and LP (d); pressure transport TTP (term 6) for scenarios HP (e) and LP (f); viscous transport TTV (term 7) for scenarios HP (g) and LP (h). The values of the TKE budget terms are normalized on f1Ub

Figure 10. Spatial distributions of the transport terms of the TKE balance of Eq. (Equation5(5) 12∂∂xj(φVm⟨φTui′ui′¯⟩⟨u¯j⟩)⏟(1):CTD=−φVm⟨φTui′uj′¯⟩∂⟨u¯i⟩∂xj⏟(2):−PTT−φVmφTui′uj′¯∂u¯~i∂xj⏟(3):−PTF−12∂∂xj(φVm⟨φTui′ui′¯u¯~j⟩)⏟(4):−TTF−12∂∂xj(φVm⟨φTui′ui′uj′¯⟩)⏟(5):−TTT−1ρf∂∂xi(φVm⟨φTui′p′¯⟩)⏟(6):−TTP+νf∂∂xjφVmφTui′∂ui′∂xj¯⏟(7):TTV+φVmρfφTp′∂ui′∂xi¯⏟(8):PTP−νfφVmφT∂ui′∂xj∂ui′∂xj¯⏟(9):−DT+1ρfV0∫Sintui′pnidS¯s−1V0∫Sintνfui′∂ui∂xjnjdS¯s⏟(10):ΦT(5) ): mean convection CTD (term 1) for scenarios HP (a) and LP (b); turbulent convection TTT (term 5) for scenarios HP (c) and LP (d); pressure transport TTP (term 6) for scenarios HP (e) and LP (f); viscous transport TTV (term 7) for scenarios HP (g) and LP (h). The values of the TKE budget terms are normalized on f1Ub

Figure 11. Schematic representation of the energy fluxes (arrows) between double-mean flow, form-induced flow, turbulent flow and mobile bed in the particle transporting flows

Figure 11. Schematic representation of the energy fluxes (arrows) between double-mean flow, form-induced flow, turbulent flow and mobile bed in the particle transporting flows