186
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Morphology and Properties of Poly(vinyl alcohol)/MMT Nanocomposite Prepared by Solid-state Shear Milling (S3M)

, &
Pages 78-92 | Received 04 May 2012, Accepted 14 Mar 2013, Published online: 02 Dec 2013
 

Abstract

Poly(vinyl alcohol) (PVA)/montmorillonite (MMT) nanocomposites were prepared by combining solid-state shear milling (S3M) technology with melt intercalation. Compared with the composite obtained by simple melt intercalation, more MMT layers were exfoliated and apparently oriented along the injection molding direction in the nanocomposite prepared by combining S3M technology and melt intercalation, which greatly increased the orientation degree of MMT, resulting in the greater interactions between PVA and MMT layers. Simultaneously, this also promoted the orientation of PVA molecules and produced effective nucleation of the crystallization of PVA. Consequently, the thermal stability and mechanical properties of PVA were obviously improved. For instance, when the MMT content was 3 wt%, the tensile strength and modulus of the nanocomposite with MMT prepared by S3M were 98.9 MPa and 3.1 GPa, respectively, increasing by 52% and 63.2% compared with PVA.

Acknowledgments

This research was supported by the National Natural Science Foundation of China (50833003, 51010004) and the International Collaboration Program from the Ministry of Science & Technology of China (2010 DFA54460).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,107.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.