160
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Influence of Nano-Bioactive Glass (NBG) Content on Properties of Gelatin-Hyaluronic Acid/NBG Composite Scaffolds

, , , , , , , , , & show all
Pages 1145-1155 | Received 17 Mar 2013, Accepted 24 Jan 2014, Published online: 11 Jun 2014
 

Abstract

The development of three-dimensional (3-D) scaffolds with highly open porous structure is one of the most important issues in tissue engineering. A novel nanocomposite scaffold of gelatin (Gel), hyaluronic acid (HA), and nano-bioactive glass (NBG) was prepared by blending NBG with a Gel and HA solution followed by lyophilization. The effects of NBG content on the properties of the Gel-HA/NBG composite scaffolds, including the morphologies, porosity, compressive strength, swelling behavior, cell viability and alkaline phosphatase (ALP) activity, were investigated. Porous composite scaffolds with interconnected pores were obtained and the pores became cylindrical with increasing NBG content. The porosity percent and swelling ability decreased with increasing NBG content; however, the compressive strength, cell viability and ALP activity were enhanced. All the results showed the addition of NBG particles can improve the physicochemical and biological properties and the Gel-HA/NBG composite scaffolds exhibited good potential for tissue engineering applications.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,107.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.