295
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Analysis of Multiple Melting of High-Speed Melt Spun Polylactide Fibers Based on Kinetic Modeling

, , , , , , , , & show all
Pages 110-128 | Received 12 Jan 2017, Accepted 29 Jan 2018, Published online: 22 Feb 2018
 

ABSTRACT

Multiple melting behavior of high-speed melt-spun polylactide (PLA) fibers was investigated by temperature modulated differential scanning calorimetry (TMDSC) in the heating process with various modulation periods in the calorimeter. In the case of the as-spun PLA fibers taken-up at 1 km/min, a melting endothermic peak and a recrystallization exothermic peak appeared at the same peak temperature of 151°C in the reversing and non-reversing heat flows (RHF and NRHF), respectively, whereas at 168°C, an endothermic peak was observed in both the RHF and NRHF. On the other hand, the as-spun PLA fibers taken-up at a high-speed of 6 km/min showed the melting in both the RHF and NRHF, but the recrystallization behavior was not obvious in the NRHF at the shorter modulation period conditions. The obtained data were analyzed based on the kinetic modeling of melting proposed by Toda et al. The real and imaginary parts of the complex apparent heat capacity in the melting region showed a strong modulation period dependence for both the low- and high-speed spun fibers. The endothermic heat flow of melting was separated by extrapolating the frequency to zero. For the PLA fibers spun at 1 km/min, a set of melting and recrystallization peaks in the RHF and NRHF appeared even for the melting at 168°C. In other words, the simultaneous occurrence of melting and recrystallization was confirmed through this extrapolation. For the 6 km/min PLA fibers, the presence of an exothermic heat of recrystallization was clearly confirmed at a peak temperature of 164°C.

Acknowledgment

The authors would like to express their sincere thanks to Mr. A. Omori and S. Watanabe for their experimental analysis support of TMDSC.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,107.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.