Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 105, 2007 - Issue 2-3: Foundations of Molecular Modeling and Simulation FOMMS 2006
126
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Pressure dependence of the compressibility of a micelle and a protein: insights from cavity formation analysis

, , , &
Pages 189-199 | Received 15 Jun 2006, Accepted 03 Oct 2006, Published online: 03 Dec 2010
 

Abstract

We present results from molecular dynamics simulations of a spherical micelle comprising 80 non-ionic C8E5 surfactants in water, a protein staphylococcal nuclease in water, and bulk n-hexane and water liquids over a range of hydrostatic pressures. We focus specifically on the pressure dependence of the volumetric properties—the partial molar volume and partial molar compressibility—of the micelle, the protein, and bulk liquids. We find that the micelle interior displays properties similar to liquid alkanes over a range of pressures and has a compressibility of ∼100−110×10−6 bar−1 under ambient conditions, which is more than twice that of liquid water. In contrast, the pressure dependence of the protein interior resembles that of solid organic polymeric materials and has a compressibility of ∼ 5−10×10−6 bar−1. We performed extensive analysis of cavity formation in all systems. Interestingly, it is not the average cavity size but the width of the cavity size distribution in a given medium that correlates with the compressibility of that medium over a broad range of pressures up to several kilobars. Correspondingly, the cavity size distribution is most sharply defined in protein interiors and is broadest in the micelle interior and in n-hexane. To explore the correlation between cavity formation and compressibility, we present preliminary calculations using the information theory approach in the bulk water phase. Analysis of cavity formation and, especially, the nature of the cavity size distribution may provide a sensitive probe of the compressibility and flexibility of local molecular environments in inhomogeneous condensed media.

Acknowledgements

We thank Dr. Lawrence R. Pratt, Professor Michael E. Paulaitis and Professor Hank Ashbaugh for fruitful discussions over the past several years. SG is grateful for partial financial support from the ACS-PRF AC grant, NSF (CAREER, BES), and NIH-RECCR grants. BP is grateful for financial support from the NIH training grant fellowship. BP, SJ and SS contributed equally to the work described here.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 886.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.