Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 105, 2007 - Issue 8
100
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

A general local composition and coordination number model for square-well fluids with variable well width and diameter ratio

, , &
Pages 1019-1037 | Received 05 Dec 2006, Published online: 11 Jun 2007
 

Abstract

A radial distribution function for attractive hard-core systems is obtained from the equilibrium of a molecular pair between local and bulk environments. With this function, a general model is established for the coordination number (CN) and local composition (LC) of square-well fluids. It meets the low-density, high-density and high-temperature limit conditions, as well as the unlike pair conservation and quasi-chemical equilibrium conditions. It also has some other features that many other models do not have: (1) its CN and LC expressions contain all pair potentials; (2) it yields temperature-dependent CN and LC for closely packed mixtures with different pair potentials; (3) its energy parameter is the difference of the total potentials of one pair in local and bulk environments, not the difference of two pair potentials. This model can accurately predict the CN, LC and compressibility factors of square-well fluids from computer simulation over a wide range of density, well width (λ = 1–2) and diameter ratio. For the case λ = 1.5, this model is better than or comparable with semi-empirical models; in other cases, it is far better than semi-empirical models. It does not need any empirical parameter for LC prediction. For the prediction of CN and compressibility factors, it only needs the smoothed radial distribution function of pure hard-sphere fluids. It also gives excellent results for lattice gases and highly nonideal lattice mixtures.

Acknowledgements

We thank the anonymous referees for their constructive comments and suggestions. This work was supported by the ‘Outstanding Young Scientist Funds’ (No. 40225008) and the ‘Key Project Funds’ (No.40537032) by the National Natural Science Foundation of China.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 886.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.