Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 106, 2008 - Issue 5
194
Views
17
CrossRef citations to date
0
Altmetric
Research Article

The effects of curvature and surface heterogeneity on the adsorption of water in finite length carbon nanopores: a computer simulation study

&
Pages 627-641 | Received 21 Nov 2007, Accepted 30 Dec 2007, Published online: 17 Jun 2009
 

Abstract

The effects of pore curvature and surface heterogeneity on the adsorption of water on a graphitic surface at 298 K were investigated using a Grand Canonical Monte Carlo (GCMC) simulation. Slit and cylindrical pores are used to study the curvature effects. To investigate the surface heterogeneity the functional group and the structural defect on the surface were specifically considered. The hydroxyl group (OH) is used as a model for the functional group and the water potential model proposed by Müller et al. is used to calculate the water interaction. For the homogeneous cylinder, the pore filling occurs at a pressure lower than the saturation pressure of the water model, while it is greater in the case of homogeneous slit pore. The size of hysteresis loop is more sensitive to the length of cylinder than that of the slit, and it increases with decreasing pore length. The isotherms of water in cylindrical pores are found to depend on the position and the concentration of the functional group. The pore filling pressure is lower with an increased number and/or with the position of the functional group. The structural defect shows significant effects on the adsorption isotherm in shifting to a lower pore filling pressure when it is located at a position away from the pore entrance. The adsorption of water on the heterogeneous surface was studied and it was found that the simulated isotherm can describe the behaviour of water on Graphitized Thermal Carbon Black (GTCB) satisfactorily. The water cluster grows mostly along the surface for the case of finite extent surface, while for the slit the pore grows in all directions but the preference is a direction perpendicular to the pore wall. Reasons for the direction of growth will be discussed.

Acknowledgements

This project is supported by the Australian Research Council. We also thank the Royal Thai Government and Suranaree University of Technology for financial support in the form of scholarship to AW.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 886.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.