Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 115, 2017 - Issue 24
162
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Physicochemical properties of nanoparticles affect translocation across pulmonary surfactant monolayer

ORCID Icon, , , &
Pages 3143-3154 | Received 22 May 2017, Accepted 14 Jun 2017, Published online: 26 Jul 2017
 

ABSTRACT

Interaction between nanoparticles (NPs) and pulmonary surfactant monolayer is one of the most important parts in NP-based pulmonary drug delivery system, which can affect the result of the inhaled nano-drugs and their potential efficacy. Here, we show how surface charge of NPs affects translocation across pulmonary surfactant monolayer with coarse-grained molecular dynamics simulations. The results reveal that the surface charge position of NPs can determine the fate of the inhaled NPs about whether they can have the ability of translocation across the pulmonary surfactant monolayer, which is that NPs with face surface charge can penetrate the pulmonary surfactant monolayer and NPs with edge surface charge cannot. Besides, dynamic process, phase state and the potential of mean force profiles further confirm this result. Moreover, compared to anionic NPs, there is a greater chance for cationic NPs to be adsorbed on the surface of the pulmonary surfactant monolayer, which can further decrease the thickness of the pulmonary surfactant monolayer and reduce the distance between charged NPs and the pulmonary surfactant monolayer. Our researches provide a novel simulation model of NPs on translocation across pulmonary surfactant monolayer and the study of NP-based pulmonary drug delivery system should consider the surface charge of NPs.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work is supported by Science and Technology Development Program of Suzhou [grant number ZXY201412].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 886.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.