375
Views
4
CrossRef citations to date
0
Altmetric
Technical Papers

Transient Safety Analysis of a Transportable Fluoride-Salt-Cooled High-Temperature Reactor Using RELAP5-3D

, , , , , & show all
Pages 1-16 | Received 09 Oct 2016, Accepted 08 Feb 2017, Published online: 04 Apr 2017
 

Abstract

A transportable fluoride-salt-cooled high-temperature reactor (TFHR) design with 20-MW(thermal) rated power and 18-month fuel cycle is proposed for off-grid applications. One of the design goals of the compact reactor core is potential transport by truck, rail, or air. Full-core thermal-hydraulic analyses and improvements using three-dimensional computational fluid dynamics (CFD) were performed previously to demonstrate the feasibility of a TFHR design at a nominal power of 20 MW(thermal). In this paper, the best-estimate system code Reactor Excursion Leak Analysis Program (RELAP5-3D) is adopted to study the transient behavior of this TFHR design and the safety characteristics of the primary loop system during accident conditions. The modeling results of the steady state were verified using CFD results with consideration of radial heat conduction between heat transfer unit cells. Four most challenging accidents of anticipated transient without scram were analyzed, as well as parametric studies of some key factors. These accidents include unprotected reactivity insertion accident (URIA), unprotected loss of heat sink (ULOHS), unprotected loss of flow (ULOF), and a combination accident of ULOF and ULOHS. The results indicate that transient temperature limits are not exceeded during the most severe accidents. They indicate satisfactory transient performance of the TFHR design. The transient temperature limit of structure material Hastelloy N, based on embrittlement phenomena, poses the most limiting constraint due to the small temperature margin of about 20 K in the accident combination of ULOF and ULOHS. Overall, TFHR is a sound reactor design from a thermal-hydraulic viewpoint.

Acknowledgments

Financial support for Chenglong Wang is provided by China National Postdoctoral Program for Innovative Talents (grant BX201600124), China Postdoctoral Science Foundation (grant 2016M600796), and the Chinese National Science Foundation (grants 91326201 and 11475132). The DOE Nuclear Energy University Program (NEUP)-IRP of FHR is gratefully acknowledged for supporting this work.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 439.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.