237
Views
5
CrossRef citations to date
0
Altmetric
Technical Papers

Solving the Spent Nuclear Fuel Problem by Fissioning Transuranics in Subcritical Advanced Burner Reactors Driven by Tokamak Fusion Neutron Sources

Pages 15-26 | Received 18 Apr 2017, Accepted 19 Jun 2017, Published online: 07 Aug 2017
 

Abstract

The Georgia Tech concept of the Subcritical Advanced Burner Reactor (SABR) spent nuclear fuel (SNF) transmutation reactor and supporting analyses to date are summarized. SABR is based on the fast reactor physics and technology prototyped in Experimental Breeder Reactor-II (EBR-II) and proposed for the Integral Fast Reactor and the PRISM Reactor and on the tokamak fusion neutron source physics and technology that will be prototyped in ITER. Preliminary fuel cycle calculations indicate that subcritical operation would enable a proliferation-resistant fuel reprocessing cycle that would safely accommodate fuel with up to 100% TRU content and that introduction of SABRs in a 1-to-3 power ratio with light water reactors would reduce the required SNF high-level waste repository capacity (defined on the basis of decay heat released) by a factor of 10 to 100. Preliminary dynamic safety calculations indicate that SABRs could be shut down to the decay heat level by turning off the plasma heating power without core damage in loss of heat sink, loss of flow, and loss of power accidents, but that additional decay heat removal capability is needed in the case of total loss of primary or secondary system pumping power.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 439.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.