1,569
Views
10
CrossRef citations to date
0
Altmetric
Technical Notes

Initial Exploratory Reactor Physics Assessment of Nonconventional Fuel Concepts for Very Compact Small Modular Reactors Using Hydroxides as Coolants and/or Moderators

Pages 160-191 | Received 05 May 2020, Accepted 06 Jan 2021, Published online: 06 May 2021

Figures & data

TABLE I Estimates of Hydrogen Atom Densities in Different Compounds

TABLE II Coolants to Test in Various Lattice Concepts

Fig. 1. Lattice cell concepts (a) 2, (b) 3, and (c) 4 for fuel assemblies in an SMR

Fig. 1. Lattice cell concepts (a) 2, (b) 3, and (c) 4 for fuel assemblies in an SMR

TABLE III Nominal Design of a SMR Operating with Hydroxide Coolants and/or External Hydroxide Moderators

TABLE IV Geometric Specification of 37-Element Fuel Assemblies

TABLE V Geometric Specifications of Rings of 37-Element Fuel Assemblies*

TABLE VI Material Densities and Specific Power for 37-Element Fuel Assemblies

TABLE VII Operating Temperatures for Components for Lattices

TABLE VIII Core Mass and Power Levels

Fig. 2. Possible SMR core layouts using lattice concepts lattice 2, lattice 3, and lattice 4

Fig. 2. Possible SMR core layouts using lattice concepts lattice 2, lattice 3, and lattice 4

Fig. 3. k -infinity versus burnup: lattice 2

Cool4 is 7LiOH/NaOH and Cool7 is FLiBe.
Fig. 3. k -infinity versus burnup: lattice 2

Fig. 4. k -infinity versus burnup: lattice 3.Cool4 is 7LiOH/NaOH and Cool7 is FLiBe

Fig. 4. k -infinity versus burnup: lattice 3.Cool4 is 7LiOH/NaOH and Cool7 is FLiBe

Fig. 5. k-infinity versus burnup: lattice 4

Cool4 is 7LiOH/NaOH and Cool7 is FLiBe.
Fig. 5. k-infinity versus burnup: lattice 4

Fig. 6. k -effective versus burnup: lattice 2

Cool4 is 7LiOH/NaOH and Cool7 is FLiBe.
Fig. 6. k -effective versus burnup: lattice 2

Fig. 7. k -effective versus burnup: lattice 3

Cool4 is 7LiOH/NaOH and Cool7 is FLiBe.
Fig. 7. k -effective versus burnup: lattice 3

Fig. 8. k -effective versus burnup: lattice 4

Cool4 is 7LiOH/NaOH and Cool7 is FLiBe.
Fig. 8. k -effective versus burnup: lattice 4

Fig. 9. Leakage reactivity: lattice 2

Fig. 9. Leakage reactivity: lattice 2

Fig. 10. Leakage reactivity: lattice 3

Fig. 10. Leakage reactivity: lattice 3

Fig. 11. Leakage reactivity: lattice 4

Fig. 11. Leakage reactivity: lattice 4

Fig. 12. Migration length: lattice 2

Fig. 12. Migration length: lattice 2

Fig. 13. Migration length: lattice 3

Fig. 13. Migration length: lattice 3

Fig. 14. Migration length: lattice 4

Fig. 14. Migration length: lattice 4

Fig. 15. Thermal/total flux: lattice 2

Fig. 15. Thermal/total flux: lattice 2

Fig. 16. Thermal/total flux: lattice 3

Fig. 16. Thermal/total flux: lattice 3

Fig. 17. Thermal/total flux: lattice 4

Fig. 17. Thermal/total flux: lattice 4

Fig. 18. Critical diameter: lattice 2

Fig. 18. Critical diameter: lattice 2

Fig. 19. Critical diameter: lattice 3

Fig. 19. Critical diameter: lattice 3

Fig. 20. Critical diameter: lattice 4

Fig. 20. Critical diameter: lattice 4

TABLE IX Core Power, Fuel Burnup, Lifetime, Spent Fuel 235U Content

TABLE X Comparison of Lattices for Burnup, FU, and UU, and Core Lifetime at 25 MW(thermal)*

Fig. 21. Relative uranium utilization

Fig. 21. Relative uranium utilization

Fig. 22. Core lifetime at 25 MW(thermal)/10 MW(electric)

Fig. 22. Core lifetime at 25 MW(thermal)/10 MW(electric)