667
Views
17
CrossRef citations to date
0
Altmetric
Technical Papers

Two-Level Convergence Speedup Schemes for p-CMFD Acceleration in Neutron Transport Calculation

&
Pages 1-14 | Received 26 Feb 2017, Accepted 17 May 2017, Published online: 10 Jul 2017
 

Abstract

This paper identifies the cause of slow convergence for optically thick coarse mesh cells, when coarse mesh-based acceleration methods known in the literature are applied to the neutron transport criticality calculation. To overcome the limitation, this paper introduces two two-level iterative schemes to speed up coarse mesh-based acceleration, and they are applied to the partial current-based coarse mesh finite difference (p-CMFD) acceleration method. In the first scheme, a type of fine mesh finite difference (p-FMFD)- or intermediate mesh finite difference (p-IMFD)-based acceleration with a fixed fission source is augmented in a coarse mesh-based acceleration with power iteration. The second scheme applies global/local inner iterations in addition to the first scheme. Because p-CMFD is unconditionally stable and provides transport partial currents (instead of net current) on the interface between two coarse mesh cells, this enables the two schemes to speed up convergence even in optically thick coarse mesh cells. Numerical results on one-dimensional and two-dimensional test problems show that the two schemes (in particular, the scheme with global/local iterations) enhance the convergence speed of p-CMFD acceleration, especially for optically thick coarse mesh cells.

View correction statement:
Corrigendum

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 409.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.