37
Views
1
CrossRef citations to date
0
Altmetric
MOLECULAR STUDIES

Molecular genetic changes in epithelial, stromal and mixed neoplasms of the endometrium

Pages 46-54 | Received 15 Nov 2006, Accepted 26 Nov 2006, Published online: 06 Jul 2009
 

Abstract

Endometrial carcinoma, endometrial stromal tumours and mixed malignant mesodermal tumours (MMMT) develop along distinctive molecular genetic pathways. Two distinctive types of endometrial carcinoma are distinguished, type I and type II, which develop along distinctive pathways and show different clinical behaviour and histological features. Type I carcinomas show endometrioid histology, are oestrogen‐related and develop from atypical endometrial hyperplasia. The molecular tumorigenesis is comparable to colorectal carcinoma with a step‐like progression and an accumulation of genetic alterations. Alterations of PTEN, K‐Ras mutations and microsatellite instability are frequent and early events in type I carcinoma, whereas p53 mutations occur during progression to grade 3 carcinoma. Serous and clear cell carcinomas are considered type II carcinomas which are mostly unrelated to oestrogen. p53 mutations occur in almost all serous carcinomas and seem to occur early, leading to massive chromosomal instability and rapid tumour progression. Gene expression profiling has supported this dualistic model of endometrial carcinoma. There is evidence of molecular differences between serous and clear cell carcinomas as well as between endometrioid carcinomas with and without microsatellite instability. A dualistic model of tumorigenesis may be also suggested for endometrial stromal tumours. Endometrial stromal sarcomas (ESS; type I endometrial sarcoma) are oestrogen‐related and seem to develop from endometrial stromal nodules (ESN). They are histologically and genetically distinct from undifferentiated endometrial sarcoma (UES) which seem to be mostly unrelated to oestrogen (type II endometrial sarcoma). ESS and ESN share the fusion gene JAZF1/JJAZ1 caused by a t(7;17)(p15;q21) translocation, whereas UES lacks a distinctive molecular alteration so far. In MMMT, which is considered a metaplastic carcinoma, p53 alteration occurs early, before clonal expansion and acquisition of genetic diversity during progression.

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.