Publication Cover
Spectroscopy Letters
An International Journal for Rapid Communication
Volume 41, 2008 - Issue 5
30
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Spectrophotometric Studies of the Energy Consumed During Oxidative Degradation of D-Fructose

Pages 212-220 | Received 08 Jun 2007, Accepted 26 Jan 2008, Published online: 14 Aug 2008
 

ABSTRACT

Mechanistic investigation of the oxidative degradation of d-fructose (D-Fruc) has been studied by spectrophotometric technique. Molecular mechanics (MM +) calculations suggest that the potential energy (PE/kcal mol−1) of the d-fruc (opening structure) is at least three (3.71) times more stable than the PE of the cycling structure of the same matrix. The oxidation constant (K ox) of the anionic form of the d-Fruc (Fruc-NaOH) is about seven times greater than that of the protonated form (Fruc-H2SO4). Therefore, the anionic form is more highly oxidizable than is the cationic form of this matrix. The limit of detection can be as low as 18 ppm (mg L−1) of d-Fruc. This is about 60 times lower than the blood sugar level (BSL) or 100 times lower than that reported previously. The proposed procedure was applied successfully for the oxidation of D-Fruc in uni-fructose powder. The anionic form of D-Fruc (Fruc-NaOH) has the ability to store energy about 744.72 kJ g−1 h at 608 nm in a condensed lightweight form. Kinetic parameters of the oxidative degradation of the anionic form of D-Fruc at different concentration were deduced. A number of models were used to evaluate the kinetic parameters. The mechanism of the degradation of D-Fruc is explained on the basis of kinetic parameters.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 745.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.