138
Views
10
CrossRef citations to date
0
Altmetric
Articles

Performance analysis of GLONASS integration with GPS vectorised receiver in urban canyon positioning

& ORCID Icon
Pages 460-471 | Received 13 Jan 2018, Accepted 20 May 2018, Published online: 13 Jun 2018
 

Abstract

Urban-canyon positioning encounters many problems such as successive attenuation and even blocking of the signals. Vectorised receiver is a solution in which stronger signals aid weak and blocked ones to be tracked and reacquired. On the other hand, limited accessibility to the sky makes trouble in the performance of navigation filter. As the result, integration of satellite-based positioning systems is suggested to increase the number of visible satellites in the receiver view. In this paper, the architecture of an implemented GPS-combined-GLONASS Vectorised Receiver (GGVR) in a software platform is explored and its advantages rather than a GPS-only Vectorised Receiver (GVR) are demonstrated analytically. Experimental tests in different static and dynamic scenarios are also included. The results show that in the urban-canyon trajectory where the GVR has only 80% availability, the GGVR positioning solution is 100% available in the whole movement duration.

Acknowledgement

We also thank the late Professor Kai Borre for his comments that greatly improved the manuscript.

Additional information

Funding

This work was supported by the Ministry of Education and Science of the Russian Federation

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 249.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.