528
Views
11
CrossRef citations to date
0
Altmetric
Articles

Statistical model for predicting the air permeability of polyester/cotton-blended interlock knitted fabrics

, , &
Pages 214-222 | Received 04 Jun 2013, Accepted 09 Aug 2013, Published online: 01 Oct 2013
 

Abstract

The aim of this study is to model the effect of knitting parameters on the air permeability (AP) of polyester/cotton interlock fabrics. Fabric samples of areal densities ranging from 105 to 654 g/m2 were knitted using yarns of three different polyester/cotton blends, each of the three different linear densities by systematically varying knitting loop lengths for obtaining different cover factors. It was found that changing the polyester/cotton blend ratio from 65/35 to 52/48 and 40/60 did not have a statistically significant effect on the fabric AP. AP sharply decreased with decrease in knitting loop length owing to increase in fabric areal density. Increase in yarn linear density (tex) resulted in a decrease in AP due to increase in fabric thickness as well as the areal density. It was concluded that response surface regression modeling could adequately model the effect of knitting parameters on the fabric AP. The model was validated by unseen data-set and found that predicted and actual values were in good agreement with each other with less than 5% absolute error. Sensitivity analysis was also performed to determine the relative contribution of each input variable on the AP of the interlock fabrics.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 268.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.