186
Views
9
CrossRef citations to date
0
Altmetric
Articles

The influence of two bar warp-knitted structure on the fabric tensile stress relaxation Part II: (locknit, satin, loop raised)

, &
Pages 1357-1368 | Received 21 Jul 2015, Accepted 29 Sep 2015, Published online: 13 Nov 2015
 

Abstract

When strain is applied constantly, there is a decreased stress with time in viscoelastic materials, which is called stress relaxation. During the manufacture and application of clothing and footwear, materials experience various long-lasting deformations, and relaxation process in materials arises. Thus, with theoretical and experimental study of the factors affecting stress relaxation, the ability to design and produce appropriate clothes will be increased. In the first part of this research, we studied the stress relaxation behavior of warp-knitted structures which have longer underlaps in back bar (reverse locknit, three- and four-needle sharkskin, and queens’ cord). Following the previous research, the aim of this study was to investigate the effect of fabric structure, strain percentage, and course density on the stress and stress relaxation of the warp-knitted structures which have longer underlaps in front bar (locknit, three- and four-needle satin, and loop raised). The results reveal that the fabric structure, strain value, and fabric density are important factors affecting the stress and stress relaxation percent of the fabrics. By increasing the strain and the length of underlap in the front guide bar, stress and stress relaxation percent will be increased. Also, fabrics with higher course density show higher stress and stress relaxation percent. Among the mechanical models used to describe the stress relaxation behavior of the fabrics, the three-component Maxwell’s model with parallel-connect nonlinear spring showed the best agreement with the experimental stress relaxation curves of the analyzed fabrics.

Acknowledgement

The authors thank from the Center of Excellence of New Method of Identifications in Textile (CENMIT) for their academic support.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 268.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.