291
Views
11
CrossRef citations to date
0
Altmetric
Articles

Influence of modified carbonate calcium nanoparticles on the mechanical properties of carbon fiber/epoxy composites

, &
Pages 550-554 | Received 17 May 2019, Accepted 23 Jul 2019, Published online: 29 Aug 2019
 

Abstract

Multiscale composites have been investigated by the addition of silanized carbonate calcium (CaCO3) as a secondary reinforcement into the matrix of carbon fiber/epoxy composites. The chemical modification of the CaCO3 nanoparticles was confirmed by Fourier-transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). Mechanical properties of the specimens were investigated by means of tensile, flexural, and compressive measurements to study the effect of treated CaCO3 loading (0.5, 1, 3 and 5 wt.%) on their mechanical behavior. Experimental results showed that the tensile, flexural and compressive strengths of the specimen filled with 3 wt.% treated CaCO3 composite enhanced by 14%, 36%, and 30% respectively, compared with those of neat one. The highest improvements in the mechanical moduli were observed in the multiscale composite filled with 5 wt.% treated CaCO3. Also, the fracture surface of the specimens was further analyzed in detail.

Acknowledgments

The authors thank Mr. Khamari and Mrs. Amirabadi for conducting some of the experimental tests.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 268.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.