Publication Cover
Vehicle System Dynamics
International Journal of Vehicle Mechanics and Mobility
Volume 47, 2009 - Issue 4
994
Views
55
CrossRef citations to date
0
Altmetric
Original Articles

Comparative study of Hilbert–Huang transform, Fourier transform and wavelet transform in pavement profile analysis

&
Pages 437-456 | Received 15 Mar 2007, Accepted 28 Apr 2008, Published online: 18 Mar 2009
 

Abstract

This study employs the Hilbert–Huang transform (HHT), the wavelet transform and the Fourier transform to analyse the road surface profiles of three pavement profiles. The wavelet and Fourier transforms have been the traditional spectral analysis methods, but they are predicated on a priori selection of basis functions that are either of infinite length or have fixed finite widths. The central idea of HHT is the empirical mode decomposition, which decomposes a signal into basis functions called the intrinsic mode functions (IMFs). The Hilbert transform can then be applied to the IMFs to generate an energy–time–frequency spectrum called the Hilbert spectrum. The strength of HHT is the ability to process non-stationary and non-linear data. Unlike the Fourier transform, which transforms information from the time domain into the frequency domain, the HHT does not lose temporal information after transformation, i.e. energy–frequency information is maintained in the time domain. This paper attempts to reveal the frequency and energy content of the road profile data with the three methods mentioned as a means to establishing the most suitable way of characterising the pavement profiles in terms of ride quality. In performing the analyses, the nature and behaviour of the road profiles as indicated by the literature are taken into account, that road profiles are non-stationary and are inherently non-Gaussian. It is demonstrated that HHT offers more flexibility in terms of detailed profile analysis and description, which can be beneficial to pavement profile analysts in understanding the effects on vehicle vibrations and ride quality.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 648.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.