Publication Cover
Transactions of the IMF
The International Journal of Surface Engineering and Coatings
Volume 95, 2017 - Issue 5
172
Views
16
CrossRef citations to date
0
Altmetric
Bulletin

Characterisation of R.F. magnetron sputtered Cr-N, Cr-Zr-N and Zr-N coatings

, , , , , & show all
Pages 261-268 | Received 26 Sep 2016, Accepted 13 Feb 2017, Published online: 10 Aug 2017
 

Abstract

Binary Cr-N, Zr-N and Cr-Zr-N films were synthesised using a R.F. reactive magnetron sputtering technique by co-sputtering Cr and Zr. The crystalline structure, morphology, mechanical and tribological properties of the films as a function of Zr content were characterised by X-ray diffraction, microanalysis X (WDS, EDS), X-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy, nanoindentation, scratch adhesion and pin-on-disc sliding wear tests. The residual stress was calculated with the Stoney formula. The Cr-Zr-N films exhibit a two-phase microstructure, containing a cubic (CrN, ZrN) with hexagonal (Cr2N, Zr2N) phases, as shown by X-ray diffraction. As the Zr content increased, a columnar and compact structure is developed with a low surface roughness. The results reveal that the mechanical and tribological properties of the films were found to depend on the Zr content and the hardness (maximum 26.3 GPa) is greatly improved in comparison with CrN and ZrN films, especially at 31 at.-% Zr. In the scratch test, the hardest film (Cr0.18Zr0.31N0.47) exhibited an adhesive failure at Lc2 = 34.3 N.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 303.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.