397
Views
23
CrossRef citations to date
0
Altmetric
Original Articles

Experimental and Mathematical Modeling of Wax Deposition and Propagation in Pipes Transporting Crude Oil

, &
Pages 185-207 | Received 15 May 2001, Accepted 31 Aug 2003, Published online: 23 Feb 2007
 

Abstract

One of the problems faced by the petroleum industry is the wax deposition in pipelines during transportation of waxy crude oil. Oil companies dealing with waxy crude often spend millions of dollars in remedial procedures. An ideal design should use an accurate mathematical model that would include all salient features of wax deposition and waxy crude transport to predict wax deposition during crude oil transportation. In this article, a comprehensive mathematical model, both in laminar and turbulent flow regimes, is developed. The model couples energy equation with deposition and removal kinetics model and thermodynamic model.

The k − ϵ turbulent flow model and energy equation were used to predict velocity and temperature distributions in the turbulent flow regime. Molecular diffusion of wax, as a mechanism of deposition and sloughing effect due to the hydrodynamic forces of fluid on deposited wax, have been considered. Parametric studies on the variation of the amount of wax deposition were performed for a mixture of toluene and oil wax cut in an experimental setup. Overall predictive ability of the proposed model is excellent for the laminar flow. For the turbulent flow regime, no necessary complete experimental data for model were available. Consequently, qualitative results were presented and discussed.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.