1,102
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Singhing with confidence: visualising the performance of confidence procedures

ORCID Icon, &
Pages 2686-2702 | Received 27 Apr 2021, Accepted 17 Feb 2022, Published online: 10 Mar 2022

Figures & data

Figure 1. (a) A single example of a proposed CD from Equation (Equation2) generated from x={x1,,x10}N(μ0=4,σ=3). The confidence level required to bound the true mean μ0 in this example is shown as 0.65. (

, C(μ,x);
, C(μ0,x)). (b) Singh plot for the proposed CD about the same target distribution, generated from m=104 samples X={x1,,xm} (
, S(α;μ0);
, U(0,1);
, S(α=0.7;μ0)).

Figure 1. (a) A single example of a proposed CD from Equation (Equation2(2) C(μ,x)=T(μ−μxσx/n;n−1),(2) ) generated from x={x1,…,x10}∼N(μ0=4,σ=3). The confidence level required to bound the true mean μ0 in this example is shown as 0.65. (Display full size, C∗(μ,x); Display full size, C∗(μ0,x)). (b) Singh plot for the proposed CD about the same target distribution, generated from m=104 samples X={x1,…,xm} (Display full size, S(α;μ0); Display full size, U(0,1); Display full size, S(α=0.7;μ0)).

Figure 2. (a) A single example of a proposed CD from Equation (Equation6) generated from x={x1,,x10}Ber(p=θ0). The confidence level required to bound the true rate θ0 is shown as 0.75. (

, C(θ,x);
, C(θ0,x)). (b) Singh plot for the proposed CD about the same target distribution, generated from m=104 samples X={x1,,xm}. (
, S(α;θ0);
, U(0,1);
, S(α=0.7;θ0)).

Figure 2. (a) A single example of a proposed CD from Equation (Equation6(6) C∗(θ,x)=B(θ;a=∑x+0.5,b=n−∑x+0.5),(6) ) generated from x={x1,…,x10}∼Ber(p=θ0). The confidence level required to bound the true rate θ0 is shown as 0.75. (Display full size, C∗(θ,x); Display full size, C∗(θ0,x)). (b) Singh plot for the proposed CD about the same target distribution, generated from m=104 samples X={x1,…,xm}. (Display full size, S(α;θ0); Display full size, U(0,1); Display full size, S(α=0.7;θ0)).

Figure 3. (a) A single example of a proposed CD from Equation (13) generated from x={x1,,x10}Ber(p=θ0). The confidence level required to bound the true rate θ0 is shown as [0.05, 0.17]. (

, CU(θ,x);
, CL(θ,x);
, C(θ0,x)). (b) Singh plot for the proposed CD about the same target distribution, generated from m=104 samples X={x1,,xm}. (
, SU(α;θ0);
, SL(α;θ0);
, U(0,1);
, S(α=0.7;θ0)).

Figure 3. (a) A single example of a proposed CD from Equation (13) generated from x={x1,…,x10}∼Ber(p=θ0). The confidence level required to bound the true rate θ0 is shown as [0.05, 0.17]. (Display full size, CU∗(θ,x); Display full size, CL∗(θ,x); Display full size, C∗(θ0,x)). (b) Singh plot for the proposed CD about the same target distribution, generated from m=104 samples X={x1,…,xm}. (Display full size, SU(α;θ0); Display full size, SL(α;θ0); Display full size, U(0,1); Display full size, S(α=0.7;θ0)).

Figure 4. (a) A single example of a proposed CD from Equation (14) generated from x={x1,,x10}F([μ1,μ2],[σ1,σ2]) where F([μ1,μ2],[σ1,σ2])=0.5N(μ1=4,σ1=3)+0.5N(μ2=5,σ2=1.5). The confidence level required to bound the true value xn+1 is shown as C(μ0,x)=[0.55,0.64]. (

, CU(θ,x);
, CL(θ,x);
, C(θ0,x)). (b) Singh plot for the proposed imprecise CD about the same target distribution, generated from m=104 samples X={x1,,xm} (
, SU(α;θ0);
, SL(α;θ0);
, U(0,1);
, S(α=0.7;F([μ1,μ2],[σ1,σ2]))).

Figure 4. (a) A single example of a proposed CD from Equation (14) generated from x={x1,…,x10}∼F([μ1,μ2],[σ1,σ2]) where F([μ1,μ2],[σ1,σ2])=0.5⋅N(μ1=4,σ1=3)+0.5⋅N(μ2=5,σ2=1.5). The confidence level required to bound the true value xn+1 is shown as C(μ0,x)=[0.55,0.64]. (Display full size, CU∗(θ,x); Display full size, CL∗(θ,x); Display full size, C∗(θ0,x)). (b) Singh plot for the proposed imprecise CD about the same target distribution, generated from m=104 samples X={x1,…,xm} (Display full size, SU(α;θ0); Display full size, SL(α;θ0); Display full size, U(0,1); Display full size, S(α=0.7;F([μ1,μ2],[σ1,σ2]))).

Figure 5. A series of Singh plots used for inference about θ0=0.4 generated using Equation (13) from m=104 samples of varying length n (

, SU(α;θ0);
, SL(α;θ0);
, U(0,1);
, S(α=0.7;θ0)).

Figure 5. A series of Singh plots used for inference about θ0=0.4 generated using Equation (13) from m=104 samples of varying length n (Display full size, SU(α;θ0); Display full size, SL(α;θ0); Display full size, U(0,1); Display full size, S(α=0.7;θ0)).

Figure 6. A series of Singh plots used for inference about a varying θ0 generated using Equation (13) from m=104 samples of length n = 10 (

, SU(α;θ0);
, SL(α;θ0);
, U(0,1);
, S(α=0.7;θ0)).

Figure 6. A series of Singh plots used for inference about a varying θ0 generated using Equation (13) from m=104 samples of length n = 10 (Display full size, SU(α;θ0); Display full size, SL(α;θ0); Display full size, U(0,1); Display full size, S(α=0.7;θ0)).

Figure 7. A series of Singh plots used for inference about θ0=0.4 generated using Equation (13) from m=104 samples of length n = 10 sample with varying degrees of confidence demonstrated by altering the c parameter in Equation (15) (

, SU(α;θ0);
, SL(α;θ0);
, U(0,1);
, S(α=0.7;θ0)).

Figure 7. A series of Singh plots used for inference about θ0=0.4 generated using Equation (13) from m=104 samples of length n = 10 sample with varying degrees of confidence demonstrated by altering the c parameter in Equation (15) (Display full size, SU(α;θ0); Display full size, SL(α;θ0); Display full size, U(0,1); Display full size, S(α=0.7;θ0)).

Figure 8. Global Singh plot produced using k = 100 θ values drawn from [0,1], each producing m=104 Monte Carlo samples using Equation (13) for inference about θ with a sample size of n = 10 (

, SU(α;θ);
, SL(α;θ);
, U(0,1);
, S(α=0.7;θ0)).

Figure 8. Global Singh plot produced using k = 100 θ values drawn from [0,1], each producing m=104 Monte Carlo samples using Equation (13) for inference about θ with a sample size of n = 10 (Display full size, SU(α;θ); Display full size, SL(α;θ); Display full size, U(0,1); Display full size, S(α=0.7;θ0)).

Figure 9. Singh plots representing the coverage probability for a desired α confidence level interval using Equation (Equation19) for inference about data generated from Bernoulli distributions with varying θ-parameters. Two plots are shown, for sample sizes of n = 5 (left) and n = 30 (right), each produced from m=104 samples (

, S(α;θ0=0.05);
, S(α;θ0=0.2);
, S(α;θ0=0.5);
, U(0,1)).

Figure 9. Singh plots representing the coverage probability for a desired α confidence level interval using Equation (Equation19(19) C∗¯−1(μ,x)=1−((n(μ¯−μx)σx)2+1)−1.(19) ) for inference about data generated from Bernoulli distributions with varying θ-parameters. Two plots are shown, for sample sizes of n = 5 (left) and n = 30 (right), each produced from m=104 samples (Display full size, S(α;θ0=0.05); Display full size, S(α;θ0=0.2); Display full size, S(α;θ0=0.5); Display full size, U(0,1)).