158
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Copper(II) complexes of tridentate SNO ligands: synthesis, characterization and crystal structure

, , &
Pages 817-824 | Received 26 Jan 2008, Accepted 14 May 2008, Published online: 16 Jan 2009
 

Abstract

A new series of binary copper(II) complexes, [Cu(L)2] (2) [where L is a monobasic tridentate methylthioazophenolate having NSO donor sets], has been synthesized. The reddish brown colored complexes have been characterized by elemental analyses, spectroscopic and other physico-chemical tools. The detailed structure analysis of one of the complexes, [Cu(1a)2] (2a), by single-crystal X-ray crystallography shows that thioether-S donor center participates in coordination with the copper(II) ion with a weak interaction with long Cu–S(thioether) bond distances [2.956(2) Å and 2.925(2) Å]. Electrochemical study of the complexes in methanol using TBAP as supporting electrolyte shows that heterogeneous electron-transfer rate is low at the applied potential.

Acknowledgements

The financial assistance from the Council of Scientific and Industrial Research (CSIR), New Delhi, is gratefully acknowledged. We are indebted to Prof. A.R. Chakravarty, Department of Inorganic and Physical Chemistry, IISc, Bangalore, for his valuable suggestion.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,057.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.