150
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis, spectral, and antibacterial screening studies of chelating polymers of bisphenol-A–formaldehyde resin bearing barbituric acid

, , &
Pages 1273-1281 | Received 11 Jul 2009, Accepted 09 Nov 2009, Published online: 30 Mar 2010
 

Abstract

A new polymeric ligand was synthesized by the reaction of bisphenol-A and formaldehyde in the basic medium, followed by condensation polymerization with barbituric acid in the acidic medium. Polymer metal complexes were prepared by reaction of this resin with Mn(II), Co(II), Ni(II), Cu(II), and Zn(II). The polymeric resin and its metal polychelates were characterized by elemental analysis, FT-IR, 13C-NMR, and 1H-NMR spectra. The geometry of the polymer metal complexes was evaluated by electronic spectra (UV-Vis) and magnetic moment measurement. Thermal stabilities show an increased thermal stability of the metal polychelates compared to the ligand. The antibacterial activities of all the synthesized polymers were investigated against Bacillus subtilis, Staphylococcus aureus, and Escherichia coli, showing good antibacterial activities against these bacteria. Cu(II) polychelate showed highest biocidal activity.

Acknowledgments

The authors express their sincere thanks to “The Third World Academy of Sciences Italy” for UV-Vis spectrophotometer EZ-201 (PerkinElmer) through research grant scheme No. 00-047 RG/CHE/AS.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,057.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.