198
Views
2
CrossRef citations to date
0
Altmetric
Articles

Synthesis, crystal structures, and magnetic properties of three new iron(II) complexes with pyrrolyl-substituted triaryltriazoles

, , , , , & show all
Pages 2647-2655 | Received 26 Jan 2016, Accepted 26 May 2016, Published online: 02 Aug 2016
 

Abstract

Three pyrrolyl-substituted triaryltriazoles, 3-(N-methyl-2-pyrrolyl)-4-(p-R-phenyl)-5-(2-pyridyl)-1,2,4-triazole (L1: R = MeO; L2: R = Cl; L3: R = Br), and their mononuclear iron(II) complexes, trans-[Fe(L1–3)2(NCS)2]∙2MeOH (1: L1; 2: L2; 3: L3), have been synthesized and characterized by elemental analysis, FT-IR, ESI-MS, and single-crystal X-ray crystallography. Crystallographic studies revealed that 13 are isomorphous and crystallize in the triclinic space group P-1. All the complexes have a similar octahedral [FeN6] core with two trans-NCS ions. Each ligand adopts a chelating bidentate coordination mode via the pyridyl N and one N of the triazole. Intermolecular O–H⋯O hydrogen bonding and C–H⋯π interactions link the molecules of 13 to form a 1-D chain or 2-D framework. Variable-temperature magnetic susceptibility measurements indicated that all the complexes remained in a high-spin state from 1.8 to 300 K and had a weak antiferromagnetic interaction.

Graphical Abstract

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,057.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.