108
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

TERNARY NaCl+LiCl+H2O MIXED ELECTROLYTE SYSTEM: DETERMINATION OF ACTIVITY COEFFICIENTS BASED ON POTENTIOMETRIC METHOD

, &
Pages 1654-1665 | Published online: 03 Aug 2007
 

Abstract

The mean activity coefficients for NaCl in a ternary electrolyte system were determined by the potentiometric method, at 25°C, using a solvent polymeric (PVC) sodium-selective membrane electrode (Na+ ISE), containing N,N′-dibenzyl-N,N′-diphenyl-1,2-phenylenedioxydiacetamide as ionophore, and combined with an Ag/AgCl electrode. The potentiometric measurements were performed at the same ionic strengths in different series of mixed salt solutions, each characterized by a fixed salt molal ratio r (where r = m1/m2 = 1, 10, 50, 100). The nonideal behavior of the ternary NaCl(m1) + LiCl(m2) + H2O electrolyte system was described based on the Pitzer ion-interaction model for mixed salts over the ionic strength ranging from 0.01 up to about 4 mol/kg. Two- and three-particle Pitzer interaction parameters for a mixed electrolyte system were determined based on potentiometric data, and the critical role of potentiometric selectivity coefficient (K 12) of ISE as limiting factor in the potentiometric measurements was analyzed.

Notes

a , where n is the number of experimental potentiometric cell data used; σ was obtained by a minimization-iteration procedure from which the resulting Pitzer parameters (β(0, β(1), and C φ) for NaCl in H2O were determined.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,086.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.