217
Views
48
CrossRef citations to date
0
Altmetric
Original Articles

GROUP THEORY AND DIFFERENTIAL TRANSFORM ANALYSIS OF MIXED CONVECTIVE HEAT AND MASS TRANSFER FROM A HORIZONTAL SURFACE WITH CHEMICAL REACTION EFFECTS

, , , &
Pages 1012-1043 | Published online: 05 Jun 2012
 

Abstract

Viscous, laminar mixed convection boundary-layer flow over a horizontal plate, with chemical reaction, is considered. The governing equations are expressed in nondimensional form. Group theory is employed to determine the invariant solutions of these equations under a particular continuous one-parameter group. Series solutions of the transformed coupled system of equations are then generated for velocity, temperature, and concentration functions using the Differential Transform Method (DTM) with Padé approximants. The influence of thermal buoyancy parameter, species buoyancy parameter, chemical reaction parameter, order of chemical reaction, Prandtl number, and Schmidt number on the flow characteristics is evaluated in detail The obtained solutions are verified by comparison with the numerical shooting quadrature results. Applications of the study arise in sheet materials processing, bio-reactors, and catalytic systems in chemical engineering.

Acknowledgments

The authors are extremely grateful to all the reviewers for their comments, which have helped to improve the present article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,086.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.