Publication Cover
Phase Transitions
A Multinational Journal
Volume 86, 2013 - Issue 6
493
Views
59
CrossRef citations to date
0
Altmetric
Original Articles

Optical, thermal, and structural properties of Nb2O5–TeO2 and WO3–TeO2 glasses

, , , &
Pages 598-619 | Received 07 May 2012, Accepted 04 Sep 2012, Published online: 05 Oct 2012
 

Abstract

Glass samples from two systems, Nb2O5–TeO2 and WO3–TeO2, were prepared at two melt quenching rates and characterized by density, DSC, UV-visible, and Raman spectroscopy. Addition of Nb2O5 decreased the density while increase in the WO3 concentration increased the density. Glasses prepared at higher quenching rates had smaller densities than glasses of the same composition prepared at lower quenching rate although the short-range structure of both glasses were identical, as revealed by Raman spectroscopy. Optical studies found an intense absorption band just below the absorption edge in both the glass series. This band was attributed to electronic transitions of Nb5+ and W6+ ions and a lone pair of electrons on Te atoms. Glass transition temperature increased with increase in Nb2O5 and WO3 mol% due to the increase in average bond strength in the glass network. Raman spectroscopy showed that the concentration of TeO4 units decreased with the increase in Nb2O5 and WO3 concentrations.

Acknowledgements

Atul Khanna thanks UGC-DAE-Consortium for Scientific Research, Mumbai and Indore Centers, India for research grants.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,144.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.