447
Views
13
CrossRef citations to date
0
Altmetric
Articles

Piezoelectric properties of polymer/lead-free ceramic composites

, , , &
Pages 708-716 | Received 17 Mar 2016, Accepted 23 Jun 2016, Published online: 22 Jul 2016
 

ABSTRACT

Thermoplastic/lead-free piezoelectric ceramic composite have been prepared. Sodium niobate (NaNbO3) has been chosen for its high Curie temperature. Moreover, it could be synthesized with two different morphologies: NaNbO3 nanowires (NN NW's) and NaNbO3 particles (NN P's). The filler has been dispersed in thermoplastic matrices with different dielectric permittivities ϵM: PA11 ( ϵM= 2) and polyvinylidene fluoride (PVDF) (ϵM= 10). Due to polarization conditions, only ceramic particles are poled. The piezoelectric coefficient (d33) has been measured in composites. The higher d33 is recorded in composites based on PA11 (d33 = 6.5 pC.N−1 for 30 vol. % NN NW's). The influence of the NN aspect ratio on PVDF/NN composites has been analysed: the higher d33 (d33 = 2.6 pC.N−1 for 25 vol. %) is recorded in PVDF/NN P's. The major interest of these hybrid lead-free piezoelectric composites is mild poling conditions, ductility and thermal stability of piezoelectric performances.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,144.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.