226
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Analysis of a small agricultural watershed using remote sensing techniques

&
Pages 3727-3738 | Published online: 22 Feb 2007
 

Abstract

Salinization of land and sweet water is an increasing problem worldwide. In the Carpathian Basin, particularly in arid and semi‐arid regions, irrigation is a contributing factor to the secondary salinization problems, one of the major problems affecting soils in Hungary. Conventional broadband sensors such as SPOT, Landsat MSS, and Landsat ETM+ are not suitable for mapping soil properties, because their bandwidth of 100–200 mm cannot resolve diagnostic spectral features of terrestrial materials. Analytical techniques, developed for analysis of broadband spectral data, are incapable of taking advantage of the full range of information present in hyperspectral remote sensing imagery. In our pilot project in Tedej farm in the Great Plain Region, Hungary, the DAIS sensor was used to assess salinity risk, covering the spectral range from the visible to the thermal infrared wavelengths at 5 m spatial resolution, and other major indicators of soil salinization (NDVI, SAVI, canopy cover) were quantified with advanced remote sensing techniques using the TETRACAM ADC agricultural multispectral camera which offers red/green and NIR imaging at megapixel resolution. As a result, prominent absorption bands around 1450 nm and 1950 nm wavelength in most soil spectra are attributed to water and hydroxyl ions. Occasional weaker absorption bands caused by water also occur at 970, 1200, and 1700 nm. Absorption features near the 400 nm wavelength for all samples are also noticeable. Absorption bands at 1800 and 2300 nm are attributed to gypsum, while strong absorption features near 2350 nm are assigned to calcite (CaCo3). Saline soils exhibited significantly higher reflectance values all throughout the 325–2500 nm wavelengths of the spectrum. Soils with a high amount of soluble salts gave a higher average reflectance than soils with a low salt content. In the project, an ADC camera‐based real‐time integrated system was developed to take advantage of more specialized spectral information and to provide even more accurate and useful data directly from the field. The results revealed that the NDVI and SAVI index and the canopy cover mapping taken with multispectral cameras can be useful as an indirect marker and help for detecting salinization. However, we did not find a strong correlation between NDVI and soil salinity. This is probably because the detection and assessment of lower levels of salinity are difficult, mainly owing to the nature of the remotely sensed images; with such images, it is not possible to obtain information on the third dimension of the 3‐D soil body. Also, the impact of salinity on electromagnetic properties needs to be explored further to understand how it can be derived indirectly from remotely sensed information. With the rapid validation of remotely sensed hyperspectral data, the decision in the future, with the best trade‐off between irrigation and sustainable land use made by agricultural specialists in this region, can be more environmentally sound and more accurate using the results from the pilot.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 689.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.