277
Views
23
CrossRef citations to date
0
Altmetric
Original Articles

Evaluating temporal variability in the spectral reflectance response of annual ryegrass to changes in nitrogen applications and leaching fractions

, &
Pages 4137-4157 | Received 17 Jan 2006, Accepted 03 Apr 2006, Published online: 22 Feb 2007
 

Abstract

A two‐year study was conducted in 2002 and 2003 at the University of Nevada, Las Vegas's center for urban water conservation to assess canopy spectral response of annual ryegrass (Lolium multiflorum Lam.) grown under various combinations of N and irrigation (based on leaching fraction: LF) treatments. Multispectral measurements were acquired using a ground‐based spectroradiometer (200–1100 nm) on a biweekly basis during the growing season (October–May) in 2002 and 2003. Multispectral parameters were correlated with soil–plant parameters and temporal variability was investigated. Results showed that the normalized difference vegetation index (NDVI), stress index (SI), photochemical reflectance index (PRI) and canopy reflectance at 693 nm, were highly correlated with tissue N concentration (TN), tissue moisture content (TM), TN×TM and canopy colour, as influenced by N and LF treatment combinations. Coefficients of determination ranged from 0.50 to 0.79 (P<0.001) based on single‐day correlations and correlations established over the entire growing period in 2002 and in 2003. TN was mainly predicted from wavelengths in the VIS portion of the spectrum, while TM was predicted from wavelengths in the VIS and NIR. Correlations were inconsistent between spectral parameters and physiological parameters throughout the study confirming the problem of temporal variation associated with spectral signatures of turfgrass species. However, spectral reflectance showed significant potential for monitoring turfgrass N and moisture status, and was able to capture temporal variability over the same growing period and from one year to another. The results provide a sound basis for future validation of ground‐based remote sensing for turfgrass management on golf courses.

Acknowledgements

We thank TORO Corporation for providing financial support. We also thank Dr. L. Fenstermaker (Desert Research Institute, Las Vegas) for her valuable insights. Finally, we wish to acknowledge the able assistance of the entire lab and field team in Dr. Devitt's lab at the University of Nevada, Las Vegas.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 689.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.