199
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Interannual variability of convective activity over the tropical Indian Ocean during the El Niño/La Niña events

Pages 5565-5582 | Received 05 Mar 2009, Accepted 14 Sep 2009, Published online: 06 Jul 2011
 

Abstract

Convection over the tropical Indian Ocean is important to the global and regional climate. This study presents the monthly climatology of convection, inferred from the outgoing longwave radiation (OLR), over the tropical Indian Ocean. We also examine the impact of El Niño/La Niña events on the convection pattern and how variations in convection over the domain influence the spatial rainfall distribution over India. We used 35 recent years (1974–2008) of satellite-derived OLR over the area, the occurrence of El Niño/La Niña events and high resolution grid point rainfall data over India. The most prominent feature of the annual cycle of OLR over the domain is the movements of convection from south-east to north and north-west during the winter to the summer monsoon season. This feature represents the movement of the inter-tropical convergence zone (ITCZ). The climatology of OLR during the winter months (December–February) over the domain is characterized by high subsidence over central India with a decrease of OLR values towards the north and south. Moderate convection is also seen over the Himalayan Range and the south-east Indian Ocean. In contrast, during the summer (June–September) the OLR pattern indicates deep convection along the monsoon trough and over central India, with subsidence over the extreme north-west desert region. The annual march of convection over the Arabian Sea and Bay of Bengal sector shows that the Arabian Sea has a limited role, compared to the Bay of Bengal, in the annual cycle of the convection over the tropical Indian Ocean. The composite OLR anomalies for the El Niño cases during the summer monsoon season show suppressed convection over all of India and moderate convection over the central equatorial Indian Ocean and over the northern part of the Bay of Bengal. Meanwhile in La Niña events the OLR pattern is nearly opposite to the El Niño case, with deep convection over entire Indian region and adjoining seas and subsidence over the northern Bay of Bengal and extreme north-west region. The spatial variability of the 1° × 1° summer monsoon rainfall data over India is also examined during El Niño/La Niña events. The results show that rainfall of the summer monsoon season over the southern peninsular of India and some parts of central India are badly affected during El Niño cases, while the region lying along the monsoon trough and the west coast of India have received good amounts of rainfall. This spatial seasonal summer monsoon rainfall distribution pattern seems to average out the influence of El Niño events on total summer monsoon rainfall over India. It seems that, in El Niño events, the convection pattern over the Bay of Bengal remains unaffected during summer monsoon months and thus this region plays an important role in giving good summer monsoon rainfall over the northern part of India, which dilutes the influence of El Niño on seasonal scale summer monsoon rainfall over India. These results are also confirmed by using a monthly bias-corrected OLR dataset.

Acknowledgements

The author is grateful to Prof. B. N. Goswami, Director, Indian Institute of Tropical Meteorology, Pune, for encouragement and providing the necessary facilities. The author is also thankful to the Indian Meteorological Department for providing the rainfall data set used in this study.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 689.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.