1,873
Views
93
CrossRef citations to date
0
Altmetric
Original Articles

Hyperspectral remote sensing for estimating aboveground biomass and for exploring species richness patterns of grassland habitats

, , , &
Pages 9007-9031 | Received 16 Sep 2009, Accepted 13 Oct 2010, Published online: 18 Oct 2011
 

Abstract

Dry grassland sites are amongst the most species-rich habitats of central Europe and it is necessary to design effective management schemes for monitoring of their biomass production. This study explored the potential of hyperspectral remote sensing for mapping aboveground biomass in grassland habitats along a dry-mesic gradient, independent of a specific type or phenological period. Statistical models were developed between biomass samples and spectral reflectance collected with a field spectroradiometer, and it was further investigated to what degree the calibrated biomass models could be scaled to Hyperion data. Furthermore, biomass prediction was used as a surrogate for productivity for grassland habitats and the relationship between biomass and plant species richness was explored. Grassland samples were collected at four time steps during the growing season to capture normally occurring variation due to canopy growth stage and management factors. The relationships were investigated between biomass and (1) existing broad- and narrowband vegetation indices, (2) narrowband normalized difference vegetation index (NDVI) type indices, and (3) multiple linear regression (MLR) with individual spectral bands. Best models were obtained from the MLR and narrowband NDVI-type indices. Spectral regions related to plant water content were identified as the best estimators of biomass. Models calibrated with narrowband NDVI indices were best for up-scaling the field-developed models to the Hyperion scene. Furthermore, promising results were obtained from linking biomass estimations from the Hyperion scene with plant species richness of grassland habitats. Overall, it is concluded that ratio-based NDVI-type indices are less prone to scaling errors and thus offer higher potential for mapping grassland biomass using hyperspectral data from space-borne sensors.

Acknowledgements

The authors would like to thank the Swiss Federal Research Institute WSL and the Swiss Agency for the Environment, Forest and Landscape (SAEFL) for funding this study. Additional funding came from the 6th framework programme of the EU (contracts GOCE-CT-2007-036866 and ENV-CT-2009-226544) and the Swiss National Foundation (SNF) project HyperSwissNet. In addition, we would like to thank the anonymous reviewer for his or her valuable comments that have helped to improve the quality of the article considerably.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 689.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.