1,021
Views
68
CrossRef citations to date
0
Altmetric
Articles

Mapping inland lake water quality across the Lower Peninsula of Michigan using Landsat TM imagery

, , , , &
Pages 7607-7624 | Received 08 Mar 2013, Accepted 22 Jun 2013, Published online: 27 Aug 2013
 

Abstract

The number, size, and distribution of inland freshwater lakes present a challenge for traditional water-quality assessment due to the time, cost, and logistical constraints of field sampling and laboratory analyses. To overcome this challenge, Landsat imagery has been used as an effective tool to assess basic water-quality indicators, such as Secchi depth (SD), over a large region or to map more advanced lake attributes, such as cyanobacteria, for a single waterbody. The overarching objective of this research application was to evaluate Landsat Thematic Mapper (TM) for mapping nine water-quality metrics over a large region and to identify hot spots of potential risk. The second objective was to evaluate the addition of landscape pattern metrics to test potential improvements in mapping lake attributes and to understand drivers of lake water quality in this region. Field-level in situ water-quality measurements were collected across diverse lakes (n = 42) within the Lower Peninsula of Michigan. A multicriteria statistical approach was executed to map lake water quality that considered variable importance, model complexity, and uncertainty. Overall, band ratio radiance models performed well (R2 = 0.65–0.81) for mapping SD, chlorophyll-a, green biovolume, total phosphorus (TP), and total nitrogen (TN) with weaker (R2 = 0.37) ability to map total suspended solids (TSS) and cyanobacteria levels. In this application, Landsat TM and pattern metrics showed poor ability to accurately map non-purgable organic carbon (NPOC) and diatom biovolume, likely due to a combination of gaps in temporal overpass and field sampling and lack of signal sensitivity within broad spectral channels of Landsat TM. The composition and configuration of croplands, urban, and wetland patches across the landscape were found to be moderate predictors of lake water quality that can complement lake remote-sensing data. Of the 4071 lakes, over 4 ha in the Lower Peninsula, approximately two-thirds, were identified as mesotrophic (n = 2715). This application highlights how an operational tool might support lake decision-making or assessment protocols to identify hot spots of potential risk.

Acknowledgements

Funding for this research was provided in part by the Great Lakes Fisheries Trust and the National Institutes of Health.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 689.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.