214
Views
1
CrossRef citations to date
0
Altmetric
Articles

Hybrid atmospheric correction algorithms and evaluation on VNIR/SWIR Hyperion satellite data for soil organic carbon prediction

ORCID Icon, ORCID Icon &
Pages 8246-8270 | Received 16 Oct 2017, Accepted 17 May 2018, Published online: 22 Jun 2018
 

ABSTRACT

Visible near-infrared and shortwave infrared data acquired by spaceborne sensors contain atmospheric noise, along with target reflectance that may affect its end applications, e.g. geological, vegetation, soil surface studies, etc. Several atmospheric correction algorithms have been already developed to remove unwanted atmospheric components of a spectral signature of Earth targets obtained from airborne/spaceborne hyperspectral image. In spite of this, choosing of an appropriate atmospheric correction algorithm is an ongoing research. In this study, two hybrid atmospheric correction (HAC) algorithms incorporating a modified empirical line (ELm) method were proposed. The first HAC model (named HAC_1) combines (i) a radiative transfer (RT) model based on the concepts of RT equations, which uses real-time in situ atmospheric and climatic data, and (ii) an ELm technique. The second one (named HAC_2) combines (i) the well-known ATmospheric CORrection (ATCOR) model and (ii) an ELm technique. Both HAC algorithms and their component single atmospheric correction algorithms (ATCOR, RT, and ELm) were applied to radiance data acquired by Hyperion satellite sensor over study sites in Australia. The performances of both HAC algorithms were analysed in two ways. First, the Hyperion reflectances obtained by five atmospheric correction algorithms were analysed and compared using spectral metrics. Second, the performance of each atmospheric correction algorithm was analysed for prediction of soil organic carbon (SOC) using Hyperion reflectances obtained from atmospheric correction algorithms. The prediction model of SOC was built using partial least square regression model. The results show that (i) both the hybrid models produce a good spectrum with lower Spectral Angle Mapper and Spectral Information Divergence values and (ii) both hybrid algorithms provided better SOC prediction accuracy, in terms of coefficient of determination (R2), residual prediction deviation (RPD), and ratio of performance to interquartile (RPIQ), with R2 ≥ 0.75, RPD ≥ 2, and RPIQ ≥ 2.58 than single algorithms. HAC algorithms, developed using ELm technique, may be recommended for atmospheric correction of Hyperion radiance data, when archived Hyperion reflectance data have to be used for SOC prediction mapping.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 689.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.