325
Views
12
CrossRef citations to date
0
Altmetric
Articles

A novel nonlinear hyperspectral unmixing approach for images of oil spills at sea

, , &
Pages 4684-4701 | Received 07 Aug 2019, Accepted 14 Nov 2019, Published online: 27 Feb 2020
 

ABSTRACT

Hyperspectral remote sensing is currently being used to detect and monitor marine oil spills that cause damage to the environment. However, nonlinear interactions of oil and water make it difficult to extract their fractional abundances from the spectral response. Improving the modelling of nonlinear hyperspectral mixtures, which is required for a thorough and reliable characterization of the materials in an image, remains a challenging yet fundamental task. This study proposes a new model that combines polynomial and trigonometric systems to understand the nonlinear effects of oil and water spectral response. Although the model is nonlinear, unmixing is performed by solving a linear problem, thus allowing fast computation. Compared to classic polynomial models, the details of nonlinear interactions are better expressed and quantified, and the reconstruction accuracy and endmember abundance estimation are improved for both synthetic and real datasets. Both the polynomial and trigonometric parts of the model play important roles in characterizing nonlinearities, with statistically linear dependence areas covering more than 90% and 30%, respectively, in oil spill images sampled after the Deepwater Horizon explosion. Analysis of the experimental results suggests that the proposed model provides an efficient and accurate unmixing method that can be used to help design oil spill response plans.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The work was carried out with the support of the Marine Public Welfare Projects of China (No. 201305002), National Natural Science Foundation (No. 51609032) and the Fundamental Research Funds for the Central Universities (No. 3132019141).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 689.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.