410
Views
27
CrossRef citations to date
0
Altmetric
feature articles

Lattice Boltzmann Method Applied to Radiative Transport Analysis in a Planar Participating Medium

, , &
Pages 1267-1278 | Published online: 04 Mar 2014
 

Abstract

This article deals with the extension of the usage of the lattice Boltzmann method (LBM) to the analysis of radiative heat transfer with and without conduction in a one-dimensional (1-D) planar participating medium. A novel lattice needed for the calculation of the volumetric radiation spanned over the 4π spherical space has been introduced. The LBM formulation is tested for three benchmark problems, namely, radiative equilibrium, nonradiative equilibrium, and a combined mode conduction–radiation problem in a planar geometry. In the combined mode problem, with radiative information known from the proposed lattice structure, the energy equation is also formulated and solved using the LBM. The D1Q2 lattice is used in the energy equation. For validation, in problems 1 and 2, the LBM results are compared with the finite-volume method (FVM), while in problem 3, the LBM-LBM results are compared with the LBM-FVM in which FVM is used for the computation of radiative information. Comparisons are made for the effects of the governing parameters such as the extinction coefficient, the scattering albedo, and so on, on heat flux and emissive power (temperature) distributions. LBM results are found to be in excellent agreement with the benchmark results.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 323.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.