267
Views
27
CrossRef citations to date
0
Altmetric
Research Articles

Gallic acid ameliorates sodium arsenite-induced renal and hepatic toxicity in rats

, , ORCID Icon, , &
Pages 341-352 | Received 27 Sep 2018, Accepted 03 Mar 2019, Published online: 25 Mar 2019
 

Abstract

Chronic exposure to toxic inorganic arsenic results in the adverse health effects including skin lesions, cardiovascular diseases, diabetes, neurological disorders, and liver and kidney diseases. Gallic acid (GA) is an important phenolic compound, which could protect different tissues from oxidative stress induced damage. The present study investigated effects of GA against sodium arsenite (SA)-induced renal and hepatic toxicity. Thirty-five rats were randomly divided in to five groups; group 1 was treated with normal saline (2 ml/kg/day, p.o.; for 21 days); group 2 was exposed to SA (10 mg/kg/day, p.o.; for 14 days); groups 3 and 4 were treated with GA (10 and 30 mg/kg/day, respectively; for 7 days) prior to exposure to SA, and treatment was continued up to 21 days in parallel with SA administration; group 5 was treated with GA (30 mg/kg/day, p.o.; for 21 days). The level of MDA, IL-1β, NO and glutathione (GSH) and the activity of glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT) were evaluated in kidney and liver tissues. Histopathological parameters and serum levels of ALT, AST, ALP, Cr and BUN were also assessed. Treatment with GA remarkably improved SA-induced alteration of hematological and histopathological parameters; these protective effects were associated with the reduction of SA-induced elevation of MDA, IL-1β and NO levels as well as reduction of GSH level and GPx, SOD and CAT activity. Our results suggest that GA may inhibit SA-induced kidney and liver toxicity through scavenging reactive free radicals and increasing intracellular antioxidant capacity.

Disclosure statement

The authors report no conflict of interest.

Additional information

Funding

This work was supported by the Deputy of Research of Jundishapur University of Medical Sciences, Ahvaz, Iran under grant number 94S137.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,271.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.